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Abstract

--This dissertation describes the application of an adaptive solution technique to

the dynamical equations used in numerical weather models. The adaptive technique

employed is that of Berger and Oliger. It uses a finite difference method to integrate
the dynamical equations first on a coarse grid and then on finer grids. The location

of the fine grids is determined using a Richardson-type estimate of the truncation

error in the coarse grid solution. By correctly coupling the integrations on the various

grids, periodically re-estimating the error and recreating the finer grids, approximately

uniformily accurate solutions are economically produced. -

Two horizontally refining adaptive models, based on different sets of equations,

are developed. The first, based upon the hydrostatic "primitive" equations of me-

teorology, is used to solve for the advection of a barotropic cyclone and to simulate

the development of a baroclinic disturbance which results from the perturbation of

an unstable jet. These integrations demonstrate the feasibility of using multiple, ro-

tated, overlapping fine grids. Direct computations of the truncation error confirm the

accuracy of the Richardson-type truncation error estimates.

The primitive equations do not form a well-posed Initial Boundary Value Problem

(IBVP). The second adaptive model, based upon a non-hydrostatic set of equations

which do form a well-posed IBVP, is developed and then tested by simulating a

developing baroclinic disturbance. The well-posedness of the equations, the necessity

for less filtering in the finite difference model and the ability to extend integrations

to non-hydrostatic motions are significant reasons for using the new set of dynamical

equations in place of the hydrostatic primitive equations.

Incorporating vertical refinement into an adaptive model is investigated. The ill-

posedness of the primitive equations is a direct result of the hydrostatic approximation

and may lead to instabilities in a vertically refining model. This is not a problem with

the second set of equations. A more immediate and unsolved problem is that of

vertically interpolating the thermodynamic variables of the hydrostatic approximation

and the near geostrophic balance present in large scale flows. The atmosphere is very

nearly in hydrostatic balance, thus even for the nonhydrostatic model the interpolation 2
problem remains.
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1. INTRODUCTION

Accurately computing atmospheric flows is a difficult task. Integrations must

be performed accurately and in a timely manner if the simulations are to be helpful

to weather forecasters, but the variety of scales which must be included for successful

representation of the flow, and about which forecasters need information, strain the

storage capabilities and speed of the most advanced computers. Planetary waves

are many thousands of kilometers long and exist for weeks. At the opposite end

of the scale of meteorological interest are the turbulent eddies which have length

scales of a few centimeters and last only seconds. We are far from resolving all scales

of motion in a single computation. We typically resolve only a small subset of the

scales, parameterize others and disregard what is left. Unfortunately this is often not

adequate.

In many cases the most interesting and important phenomena, from a forecasting

perspective, are not properly resolved in global or regional scale weather models.

These phenomena include structures such as tropical cyclones, strong surface fronts,

rainbands, squall lines and jet streams. Research models have been constructed for

use in studying these phenomena but general models for predictive purposes are not

yet feasible. Present forecast models lack the resolution necessary to represent the

small scale structure.

From a global perspective tropical cyclones, fronts, jet streams and other at-

mospheric phenomena are spatially and temporally localized. Difficulty in providing

adequate resolution arises from our inability to know beforehand where these phe- V

nomera will occur. These are spatially and temporally local phenomena and local

phenomena should be handled adaptively, but no adaptive atmospheric flow solvers
"V.

exist. -V

Phenomena in many other fluid flows which are difficult to resolve are often

localized. Adaptive solvers do exist for many of these flows and, in general, two

adaptive strategies are used. In the first all existing gridpoints are redistributed from

regions of small solution variation to regions of large solution variation. These global

methods vary in the criteria and methods used to move the points, but in all cases the

total number of points remains the same. They are often used in conjunction with

grid transformation methods which involve mapping an irregular physical domain into

.'V- ~- -- V



a rectangular computational domain. The second strategy involves adding or deleting

grid points so as to obtain a desired solution accuracy. The additions and deletions

are local, thus the techniques are local grid refinement techniques.

Atmospheric flows appear ideally suited to local grid refinement techniques be-

cause the important phenomena are localized. The local grid refinement techniques

can be broken into two catagories: one in which the new points are inserted or

imbedded into the existing grid, and hence only one grid exists, and a second where

refinements are placed over the existing grid, the refinements constituting separate

grids.

A example of embedding new points in an existing grid is the work of Dannenhof-

fer and Baron (1986). Their code solves transonic flow over a 2-D airfoil. Refinements

are based on refinement parameters such as first or second order differences in the

density, pressure or entropy. An expert system handles the refinement parameters and

rules governing how and where to refine.

In this technique grids are no longer rectangular in nature and neither is the data

structure which holds the solution fields. A significant amount of information must

be stored to describe the grid structure. The solver which uses this grid structure

is complex. An example of a refined grid is shown in Figure 1. Even with this

complexity and loss of rectangularity much vectorization of the code is possible and

efficient integrations are being performed.

An example where refinements are placed over the existing grid is the scheme of

Berger and Oliger (1984). The same scheme has been used by Berger and Jameson

(1985) who also solve transonic flow over a 2-D airfoil. In this technique the refine-

ments are separate rectangular grids rather than being points embedded in the coarse

grid. Any solver which works on a rectangle can be used, because the solver is just a

module called by the adaptive routines to advance the solution on a single rectangular

grid. Figure 2 shows a final set of grids in a Berger and Jameson calculation. Note the

large difference between these grids and those of Dannenhoffer and Baron in Figure

1. There are many other differences between the two schemes and interested readers

should consult the referenced papers. *

There are no adaptive solvers for atmospheric flows but there are several ap-

proaches that are presently being used to address the resolution problem in numerical

2
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Figure 1 Grid after three regriddings in the Dannenhoffer and Baron grid refinement
method. All points belong to the same grid.

Figure 2 Grid after one refinement in the Berger and Jameson model. The fine
grids are seperate from the coarse grid.
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weather prediction (NWP). Grids are often vertically nonuniform with more layers

close to the surface. Different vertical coordinates have been used to achieve this in

a more natural way. For example, the potential temperature [9 = T(p,,,.ac,/p)R/c,]

may be used as the vertical coordinate with a resulting increase in resolution around

fronts. The normalized pressure a P/Puriace is more commonly used as a vertical

coordinate. This system allows increased accuracy in the specification of the surface

boundary because of the simplicity of the surface boundary condition. Horizontal lay-

ers smoothly follow the surface. These approaches are passive methods for increasing

resolution. They are a direct result of the form of the equations or difference methods.

Another technique for increasing the resolution in atmospheric prediction codes

consists of placing finer grids inside a coarser grid at any location where greater
resolution or accuracy is desired. In the atmospheric science literature the fine grids

are known as nested grids and implementation has been achieved in two forms: one-

way interactive and two way interactive.

One way interaction is the simplest nested grid approach. The lateral boundary

conditions for the fine grid are supplied from the coarse grid solution. Information

is passed from the coarse grid to the fine grid but not from fine to coarse, hence,

the method is called one-way interactive. Many regional atmospheric models are one-

way interactive because they receive their lateral boundary values from global model

solutions but have no effect on these solutions. The larger scales of the flow which

cannot be simulated on the fine grid are allowed to affect the fine grid solution. The

major problem is the different wave speeds which result from the different resolutions

on the two grids. Discontinuities and distortions can develop at the fine grid boundary

as a result of having no feedback from the fine to the coarse grid (Haltiner and

Williams, 1980). Sponge-type boundary conditions have been developed for one-way

interactive fine grid models which make useful results possible.

The one-way interactive approach implicitly assumes that small scale phenomena

have no major influence on the larger scale flow treated on the coarse grid. This is not

generally true because two-way exchanges of energy exist between scales. The two-

way interactive nested grid approach addresses this problem. The procedure consists

of integrating the fine grid along with the coarse grid. Lateral boundary conditions

for the fine grid are taken from the coarse grid solution. The solution on the coarse

4



Figure 3 Grid setup for the NGM. Coarse global grid has an average resolution of
320 km., the second grid 160 km. and the third grid 80 km. From Hoke (1984).

grid is updated with the fine grid solution at any location where the two coincide.

The scheme is thus two-way interactive because the fine grid solution does influence

the coarse grid solution.

The two-way interactive method has been implemented in two forms, one where

the fine grid location is fixed and another where the fine grid is allowed to move during

the time integration. An example of the former is the Nested Grid Model (NGM) which

has been developed at the National Meteorological Center. The National Weather

Service distributes NGM results as guidance to forecasters. The model consists of a

hemispherical grid over which two finer grids have been placed. The fine grids are

centered over North America because forecast information is needed there. The grids

are illustrated in Figure 3.

Several tropical cyclone models have fine grids which move during the integration

to keep the fine grid over the cyclone. This is accomplished by moving the fine

grid when a solution feature, such as the surface low associated with the cyclone,

moves. In all cases the fine grids are aligned with the coarse grids, but they may

move incrementally up, down or sideways. Examples of these models are the tropical

cyclone models described by Harrison (1973) and Jones (1977).

It is difficult to know, a priori, precisely where increased resolution will be nec-

essary. The NGM provides increased resolution over a continent because increased

5. . .



resolution may be necessary there and also because forecasts are most important over
the continent. The tropical cyclone models attempt to provide resolution of the cy-

clone and the the initial location of the cyclone must be known to locate the fine grid.

The fine grid will remain even if the cyclone disappears, and if a new cyclone were to

appear elsewhere no new fine grid would appear over it. The NGM is certainly not

adaptive and the nested tropical cyclone models are not truly adaptive.

Solver complexity is a strong barrier to using adaptive techniques in NWP.

Weather prediction codes solve much more than a simple set of dynamical equations.

There are equations for water vapor (and possibly water in its other states), routines

which calculate radiational heating and heating due to phase changes of water, rou-

tines which model cloud effects, complex calculations for fluxes of heat and moisture
into the atmosphere, and usually parameterizations of other processes. Most codes

are the result of many peoples' effort over several years. Proven and tested routines

are often borrowed from one code to put into another. Adaptive methods using re-
finements which are separate grids appear the logical choice for use as the basis of an

adaptive weather model. Existing, well-tested software can often be used with only

minor changes and procedures can be written with little knowledge of the adaptive

routines.
In this dissertation we present results from an adaptive atmospheric flow solver

which uses the method and software developed by Berger and Oliger (1984). The

adaptive method operates on multiple, component grids. Fine grids, which overlie

the coarse grid(s), are created and removed based on a Richardson-type estimate of
the truncation error in the finite difference solution. The goal is to maintain a given

accuracy for a minimum amount of work.

Our purpose is to show that an adaptive atmospheric flow solver is feasible and

that the adaptive technique will produce self-consistent results. In essence we are
proving a concept, the concept being (1) that refinement should occur only where
necessary, as dictated by the error in the numerical solution, and in this way improve

the accuracy and overall resolution of the entire solution and (2) that this can be ac-

complished by using the method of Berger and Oliger. Hence, we wish to demonstrate

that our adaptive model yields better results compared to results from the same solver

on a single grid, this being sufficient to demonstrate the feasibility of the adaptive

6



atmospheric flow solver. For prediction purposes one would use the best available

solver for the scales one is attempting to predict.

In Chapter 2 we review the adaptive grid refinement technique of Berger and

Oliger. The solution procedure is outlined along with a description of the data struc-

ture and program design. Chapter 3 presents the hydrostatic "primitive equations"

of meteorology which are derived from the Euler equations by making the hydro-

static approximation. A solver for these equations is used as the basis of our first

adaptive solver. The initial test cases for this solver describe flow in an idealized

atmosphere: adiabatic flow in a periodic channel with no moisture present in the

atmosphere and no diabatic heating. At the end of the Chapter 3 we briefly dis-

cuss the issues of stability and accuracy for these equations as they are used in the

adaptive model. More detailed discussion of the issues of accuracy and conservation

is contained in Chapter 5. In Chapter 4 we examine the results of two simulations,

one for a barotropic cyclone and another for a baroclinically unstable jet, and show

that our adaptive model is self consistent and successful in simulating these flows.

We also examine the truncation error estimates at the end of Chapter 4. Chapter 5

outlines the problems we have encoutered attempting to implement uniform vertical

refinement into an adaptive or nested model. In the chapter we illustrate problems

with the primitive equations. In Chapter 6 we present a new set of equations; the

Browning-Kreiss (BK) equations. These equations no longer use the hydrostatic ap-

proximation, however, problems remain to be solved before a vertically refining model

can be constructed with these equations. The BK equations offer several advantages

over the primitive equations, most importantly their ability to be used for calculat-

ing non-hydrostatic motions. In Chapter 7 we present preliminary results from an

adaptive solver based upon the Browning-Kreiss equations which indicate that the

equations correctly represent large-scale atmospheric motions and are suitable for use

in an adaptive model. The computation of non-hydrostatic motions with this model

is also discussed. Conclusions and recommendations are found in Chapter 8.

7
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2. REVIEW OF THE ADAPTIVE GRID REFINEMENT

TECHNIQUE

We describe the adaptive procedure as used for 2-D hyperbolic problems. For

large-scale atmospheric flows the horizontal scales are orders of magnitude larger than

the vertical scales. Thus, we can easily treat atmospheric flow as a 2-D grid refinement

problem even though it is a 3-D flow. We have constructed 2-D horizontally refining

adaptive models and present results from these models in Chapters 4 and 7. We have

not successfully constructed a model which refines in all three coordinate directions.

The adaptive method is based on the idea of using multiple, component grids

on which the partial differential equations are solved. Refined grids are created or

removed based on a Richardson-type estimate of the truncation error in the finite

difference solution. The goal is to maintain a given accuracy in the numerical solution

for a minimum amount of work. A complete description of the method can be found

in Berger (1982) and Berger and Oliger (1984).

The solution procedure for the adaptive grid method is as follows. We begin

with a solution on a coarse grid that has been integrated to some time t. The error

introduced through the use of the numerical procedure is estimated at grid points

and where these errors are judged to be too large the points are flagged. Then 2-D

rectangular grids with finer meshes are fitted around these flagged points. These

subgrids may have orientations differing from the coarse grid. Initial and boundary

conditions for these new fine grids are taken from the coarse grid solution and the

fine grids are integrated along with the coarse grid to a new time t + Atc, where At,

is the coarse grid time step. Smaller time steps are taken on the fine grids to keep

Az/At constant. The coarse grid solution is then updated with the more accurate

fine grid solutions. Errors may also be estimated on the fine grids and still finer grids

introduced. Thus, there can be several levels of fine grids. The errors on the grids

can be re-estimated every few time steps and then new fine grids can be created and

old fine grids removed.

The large errors in the numerical solution are usually associated with sharp

variations in the solutions, e.g., at fronts or other disturbances. By re-estimating the

error after several time steps and regridding we create a scheme whereby the fine grids

track the disturbances. The fine grids' arbitrary orientations allow them to align with

9



the disturbances which minimizes the size of the fine grids and provides for better

resolution in numerical schemes.

The program can be viewed as consisting of three components; 1) a data struc-

ture, 2) a solver and 3) management routines. Due to the constructs of FORTRAN

the data structure is fixed. It stores the solution vectors for all grids and information

about these grids. The information and where it is stored are altered by the manage-

ment routines. These routines also pass to the solver the locations of the solution

vectors in the data structure. The overall program can be viewed as the interaction

between the solver and data structure with the management routines controlling this

interaction and performing the necessary intergrid communication (setting boundary

conditions and updating).

MANAGEMENT ROUTINES

DATA Data Grid Integration SOLVER
STRUCTURE Management Related Management "V

Tasks

The key algorithms are those which perform the integration, error estimation

and grid generation. To illustrate how they work, consider the grid arrangement shown

in Figure 4. There are several ways to advance the solution by one At, on the grids.

These are dependent on the interface conditions between the grids. For example, with

a refinement ratio r = 3, (r = hc/h! = the ratio of the coarse grid Ax to the fine

grid Ax) the integration order (from coarsest to finest and left to right) is

Integration Sequence

Go Go
G, G, G,

G2 G2 G2  G 2 G2 G2  G2 G G2

where Gi are grids at level i with i increasing for finer levels. Grids at level i are

integrated r times as often as grids at level i - 1 but with At, = Ati 1/r, thus, all

are integrated to the same point in time. The order of integration assures that all

fine grids will have sources for boundary values.

10
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Go,(-x = 540km)

G 1 .(Az = 180km) G1,2(A1X = 180km)

G:2,1( 11X=-- 60km) G22(laX =60km) G2,3 (z = 60km)

Figure 4 Adaptive run with two levels of refinement. G0, is the coarse grid, Gj,,
fine and G 2 ,i finer resolution grids.

Error estimation is also repeated and solutions from the fine grids must be

passed to the coarse grids. Errors are estimated and grids replaced on each level after

a number of time steps specified by the user. Grids at level i will be replaced, based

on an error estimate on level i - 1 grids, r times more often than grids at level i - 1.

Solutions on level i are updated with those on a higher level when the higher level

solutions have reached the same point in time.

Errors on the various grids are estimated using a method based on Richardson

extrapolation. If the solution is smooth the local truncation error can be expressed as

u(x,t + k) - Qh(u(X, 0) =k(kWIa(x,t) + hq2b(x,t))
+ kO0(k qt + ' + h q

2
+

1
)  (2.1)

=,r + kO(kqt + ' + h92+1),

where qj, q2 are the orders of accuracy in time and space, h and k are the step sizes

in space and time respectively and Qh is an operator representing the finite difference

scheme and defined as ii(x, t+k) = Qh(u(x, t)), where ii is the approximate solution.

Taking two time steps with the method defined by Q results in a truncation error of

u(x,t + 2k) - Q2(u(z,t)) = 2r + kO(kql+l + hq2+1)

11
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where Q2 is the operator Q, twice applied to u(x,t). If we let Q2h be the same

difference operator with step sizes of 2k and 2h and if we assume that the order of

accuracy of the time and space differencing are equal and also that the solution is

sufficiently smooth, then the expression for the truncation error associated with this

operator is

u(x,t + 2k) - Q2h(U(z,t)) = "+lr + kO(kq 1 + hq2+l)

and the expression for the leading order term r of the truncation error is
Q2(U(Xt)) - Q2  - + (2.2)

2q + - 2 +(

This gives us an estimate of the local truncation error at time t. The procedure is to

take a giant step based on mesh widths 2h and 2k using the solution at time t and

then to compare it with the solution found by taking two regular steps.

Several features of this method favor its use. First, the exact form of the

truncation error need not be known because the functions a(z, t) and b(x, t) of (2.1)

are never calculated. Second, for systems of equations containing several variables

determining the truncation error and calculating it accurately can be very difficult.

Here the same solver used to integrate the equations can be used to estimate the error.

The estimator is independent of the finite difference method and is also indepedent

of the PDE. Finally, although the method does not produce accurate estimations of

r for nonsmooth solutions, qualitatively appropriate results are obtained because the

estimates will be large in these regions and will lead to the desired regridding.

This procedure is used to calculate the truncation error, as defined by equation

2.1, for hyperbolic partial differential equations. For elliptic PDE's, Caruso (1985)

uses a similar procedure to calculate the solution error and then uses the solution

error to calculate the truncation error. The truncation error and the solution error are

generally not the same and further discussion of the truncation and solution errors

can be found in Caruso (1985).

Estimating the error at grid points is the first step in the regridding procedure.

The regridding procedure is

1) flag points needing refinement,

2) cluster the flagged points,

12 I
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3) fit rectangular grids around the clustered points and

4) repeat step 2 and 3, using different methods, if necessary.

Gridpoints are flagged if the estimated error exceeds a value specified by the user.

Clustering the flagged points serves two purposes. First, it separates spatially distinct

phenomena. In many problems there are often multiple shocks or fronts. These

features will then be on different grids. The second purpose is to subdivide points

when one large region should be fit with several grids.

Clustering the grid points and fitting rectangles to the clusters are the most

difficult parts of the regridding task. Inexpensive clustering algorithms are rarely

satisfactory for both clustering purposes. For this reason a simple algorithm is used

for clustering in a first pass and, if this proves unsatisfactory, a more complex and

expensive algorithm is used. The simple method produces clusters according to the

nearest neighbor principle. If a point has any other point within some specified

minimum distance then these points are in the same cluster. This method works well

for the first purpose, but very poorly for the second. The more complex methods use

minimum spanning trees or nearest neighbor graphs. These structures connect the

points in an organized way. An iterative method is then used which merges points

with core groups of points and attempts to maximize the efficiency of a grid. The

efficiency of a grid is a measure of how large the grid is compared to how many flagged

points the grid contains.

The last task the regridding algorithm must complete is to fit the rectangles to

the clusters. There are several methods which will perform this task and some produce,

on the average, more efficient rectangles than others. In the present algorithm a

simple, inexpensive method is used because it works well and also must frequently be

used in the clustering routine. The method fits a rectangle by computing a least-

squares fit line to a given cluster of points. This line is the principal axis of the

rectangle and an orthogonal line will be parallel to the other axis. It is then an

easy matter to compute where the sides and the corners of the rectangles should be,

though this is the most expensive part of fitting the rectangle. Finally, the rectangle is

enlarged so as , provide a buffer zone between the flagged points (the phenonmena)

and the rectangle (fine grid) boundaries.

The data structure stores two kinds of information - descriptions of grids and

13



the grid solution vectors. It is natural to think of these grids in the context of a tree,

with the coarse grid being at the root of the tree. At each node of the tree lies a grid.

Each grid (node) is characterized by the following:

1) grid location,

2) grid point specifications,

3) level in tree,

4) offspring pointer,

5) sibling pointer,

6) parent pointer,

7) intersection pointer,

8) pointer to the next grid at same level,

9) time to which grid has been integrated,

10) index in storage array for solution on grid.

This information is stored for each grid at the nodes of the tree. Figure 5 shows an

example of the tree for the grid system of Figure 4.

All solution vectors are stored in one array. This array is managed as a linked

list of used and available blocks of storage. Storage is allocated in contiguous blocks

by scanning the list of available blocks, taking the first block that is large enough,

and returning whatever space is unused. Reclaimed space can be re-inserted into the

list and reused. The structure of FORTRAN does not allow for dynamic memory

allocation outside the program, thus, all storage is defined initially.

We have described the algorithms which control the integration sequence, error

estimation, clustering, gridfitting and data management. The program is constructed

modularly. The data structure and the methods used to alter it can be accessed by all
routines. The user has only to supply an integration routine (a solver) which solves

the equations which he is interested in. Changes usually require altering only one or

a few modules, and not the entire code.

Our use of the adaptive grid method and the program just described is greatly

facilitated by code modularity. The program contains the necessary algorithms and

data structures to carry out the adaptive method outlined earlier. Many of these algo-

rithms have been borrowed from computer science, mathematics and other disciplines

and it is their application to numerical weather prediction that is new.
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coarse grid G
first level 0.1

sibling, next grid
parent, offspring - ~on level pointer

pointers --

second level G11G,

intersection

- -- ~ pointers

Figure 5 Tree for grids in Figure 4. Included are some of the pointers listed in the
text.
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3. PRIMITIVE EQUATIONS

3.1 Equations

We solve the Euler equations for dry, adiabatic, large-scale atmospheric flows.

The set commonly used for studying compressible fluid flows has as dependent vari-

ables u,v and w, the horizontal and vertical velocities, and T,p and p, the tempera-

ture, pressure and density, with geometric coordinates x, y and z. We make several

changes to this set.

Large-scale flows are very nearly hydrostatic, and making this approximation

reduces the z momentum equation to the hydrostatic equation with the added benefit

of removing sound waves from the solution. We also recast the system by using the

nondimensional pressure a in place the vertical coordinate z. The coordinate a is

defined as

a = p/ir

where 7r is the surface pressure. Thus, at the surface p = p, = 7r, a = 1 and at

the top of the atmosphere p = 0 and a = 0. The vertical coordinate a has a range

0<a<1.

Using a, we can write the equation of state as air = pRT and use it to eliminate

the density p from the equations. Finally, we introduce the geopotential 0 = gz,

which replaces z as a dependent variable. The reduced Euler equations, known as the

hydrostatic primitive equations, are

Oi(u 8 2)7r 7(ruv) - ~u, + irfv -r

RT +
r rF, (3.1) r

a 2 8a45(rv) - (Trvu) - __(rv)_ (rv ) - rfu_7r u
oX ( a , )

Oir
-RT + rFW (3.2)

-RT (3.3)
a(ln a)

a(7rcT) = -V. (rcpTV) - -(,rcT ) + ,rQ + RTw + rFT (3.4)

-V,. 7rV -r a + F, (3.5)
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where
V = Ui'+ V

R = gas constant

at

w =dp/d = 7r& + a(8w/0t + V.

The independent variables are x, y, a and t and the dependent variables are u,v,r,$,ir

and T. Equations 3.1 and 3.2 are the u and v momentum equations, 3.3 is the

first law of thermodynamics and 3.4 the hydrostatic equation. Equation 3.5 is the

transformed continuity equation. A complete derivation of these equations can be

found in Holton (1979) and Haltiner and Williams (1980).

The need to make several other assumptions arises when these equations are

used. The terms F,F,, and Q are forcing or source terms that account for processes

not explicitly accounted for in the dynamics equations. The terms in the momentum

equations theoretically include the effects of diffusion, both turbulent and molecu-

lar. In the thermodynamic equation Q represents latent and radiational heating and

cooling, fluxes of heat from the boundaries and, in essence, all diabatic effects. Ma-

jor assumptions underlying models often are found in the parameterizations of these

terms.

In large-scale flows the effects of viscosity and turbulence have negligible con-

tributions to the forcing terms F. and F.. Horizontal diffusion, fourth order in the

interior and second order near the grid boundaries, is included only to stabilize the

numerical solution. This stabilizing diffusion term is also calculated for F,, and FT.

There is no vertical diffusion in any of the equations. We are solving for adiabatic

flow, the model does not contain radiation effects, and there are no sources of heat.

Temperature instabilities are usually addressed using convective adjustment pa-

rameterizations. Unstably stratified air is seldom observed in the atmosphere at large-

scales because convection (vertical air motion) takes place in the atmosphere as a

response to the instability, leaving the atmosphere stably stratified. The instability

can be thought of as the presence of more dense air above less dense air. The use

of the hydrostatic assumption in the equations removes the mechanism which allows

the atmosphere to respond to instabilities in a vertical air column. The instability
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cannot give rise to vertical motions in these equations because there is no feedback to

a vertical momentum equation in which 9w/t is driven by the forcing. A common

approach is to parameterize convection that arises from these instabilities through the

use of convective adjustment schemes. We describe a simple dry convective adjust-

ment scheme used in this solver. For a more detailed explanation see Haltiner and

Williams (1980).

Air parcels can be characterized by their lapse rates 7,

bTI
7=-

.Sz

If in a dry atmosphere the lapse rate at a point is greater than the dry adiabatic lapse

rate, then a vertical adiabatic displacement of a parcel at this point will be unstable.

This will produce vertical convection in the region. A simple way to parameterize this

process is as follows:

1) Calculate the large-scale fields without considering instabilities.
2 Calculate the actual lapse rates and dry adiabatic lapse rates in a column.
3 Compare the lapse rates

7 < 7d stable bT = 0
7 > 7d unstable T # 0where

-Yd is the dry adiabatic lapse rate and
5T is temperature change in the column due to convection.

In the first case nothing is done because the column is stable. In the second case

the vertical temperature profile is adjusted to a neutral or slightly stable lapse rate -Yd

subject to the condition that total potential energy is conserved, i.e.,

c,.Tpdz = j Tdp = 0Z'b g Td=

where b and t represent the bottom and top of the unstable layer and cp is the

specific heat of air at constant pressure. This scheme assumes that convection causes

potential energy to be converted to kinetic energy which is eventually converted into

internal energy.
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3.2 Discretization

On a horizontal plane the grid used in this model is the C grid described in

Arakawa and Lamb (1977). The C grid is shown in Figure 6. It resolves shorter waves
well, accurately represents wave group velocities and amplitudes, and possesses very

good geostrophic adjustment properties. Vertical differencing takes place on the grid

illustrated in Figure 7. The variables shown on the horizontal grid are carried between

o levels and o and its time derivative are carried at a levels. The surface pressure ',

7r and the surface geopotential 0. are defined at the surface. The a axis is always

vertical, i.e, radially outward from the center of the earth. Consequently, the values

or gradients of 7r or 0. needed for a computation at some point on a horizontal plane

above the surface are taken as those values at the surface directly (vertically) below

the point at the surface.

We first consider how the equations are differenced on the horizontal o, surfaces

on the C grid. By centering a control volume over a u velocity point at (x, y), where

x = i Ax and y = j- Ay, we can denote fluxes of u-momentum through the control

volume faces in the x and y direction as F" and G". The discretization for the

horizontal advection terms in the u-momentum equation is

a1 i,., 1 G

TiTU (ruv) = x(,+~ - F ' + -(Gu,+, - Gu',)

where

1 + (+j+j) + Ui,v)

a(" ,s(7 '- + + + ,) + u ,,, ,, + , + -r,+ ,.))

1 .,r'

, (a i, k+,(U 'jk+1 +o, )+ U..3 ,k.i

where the overbar denotes an averaged value for 7r and 6' at the points (i,j). The

velocity u is averaged to compute an approximation of u at k ± .
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Figure 6 Grid C. The variables T, 4 and 7r are found at the p points. u and v are
the velocities in the x and y direction (East and North) respectively.

-0.6 = 0
OuIVT

-. k = 1

(Fj 0, v, T

Ac'-- 1, ,, O-pk,-

Figure 7 Vertical structure of the finite difference grid in the sigma (a) coordinate
system for a five level model.
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Similarily, we can center a control volume about a 7r point and denote "mass"

fluxes through the surfaces as F, G and S. The continuity equation (3.5) is differenced

as k

rij + (F+i,k - Fi_ .1k) + (Gi,.+ik - Gj+j_ ,k)

+ •L(i~j S,,,k-) = 0

where %
,,k+i = 7rJ',, , +

1 ,

F+i,j,k= jUi+j,k(7ri,, + ,f;+l,j)

G,,j+ j,j 2 v,+,,(rjj+1 + 7i,).,

The remaining terms in the equations 3.1-3.4 are differenced in a similar manner.

The overall scheme will conserve mass (disregarding the diffusion term in the pressure

tendency equation) but will not necessarily conserve energy.

The leapfrog method is used to integrate the spatially differenced equations

in time. The method is explicit, second order in time and possesses good phase

and amplitude characteristics for propagating waves. Equations 3.1, 3.2 and 3.3 are

marched forward in time. The surface pressure 7r is found by integrating the continuity

equation (3.5) vertically at each 7r gridpoint. It is only when integrating this equation

that the vertical boundary conditions (a = 0 at a = 0, 1) are needed. The vertical

integration of 3.5 results in
Ko9r

k=1

The 6,'s can be found by integrating 3.5 down to the required level. The geopotential

is found by integrating the hydrostatic equation 3.4.

The stability of the leapfrog scheme is limited by the CFL condition

cAt 1

The fastest waves in these equations are the gravity waves, and the external gravity

wave travels approximately an order of magnitude faster than the meteorological waves

of interest. These waves are important in the geostrophic adjustment process; thus

they cannot be filtered out of the equations without some adverse affects. However,

the gravity waves severely limit the maximum time step which can be used.
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3.3 Boundary Conditions

This problem is posed as an initial boundary value problem (IBVP). The initial

values for the velocities u and v, the surface pressure p, or 7r and the temperature T

or the geopotential 4) are necessary as initial conditions for the model.

Boundary conditions must be specified in the vertical at the top and bottom

sigma layers and at all lateral boundaries. The choice of the sigma coordinates leaves

us with very simple boundary conditions in the vertical. The conditions are

do 0=-=0
dt

at both the top (p = 0, ar = 0) and the bottom (p = p. = 7r, a = 1) of the

computational domain. At the surface 4). is specified and this serves as the lower

boundary condition for the integration of the hydrostatic equation 3.4 . At the upper

and lower boundaries free slip conditions are applied for the u and v velocities and

no-flux conditions are applied for the temperature.

The lateral boundary conditions may vary with the application of the model.

Our test cases are for flow in a free slip, east-west periodic channel. The north-south

boundaries are no flux. (v = 0). We use these boundary conditions on the base

(coarse) grid.

For fine grid boundary conditions we specify u, v, T and 7r at the boundaries

using bilinearly interpolated values from another grid. In this regard, we are choosing

to apply continuity conditions at the fine grid boundaries as opposed to treating each

fine grid as a separate initial boundary value problem. We call these boundary condi-

tions continuity conditions because they specify that the fine and coarse grid solutions

agree at the boundaries. We can do this because the fine-coarse grid boundaries are

in regions of low solution error, thus, the coarse grid solution is accurate and the

bilinear interpolation of the fine grid boundary values from the coarse grid introduces

only small error. Conditions appropriate for initial boundary value problems, open

boundary conditions in the case of the fine grids, can be derived by examining char-

acteristics of the solution at the fine grid boundaries and specifying conditions such

that the solution is uniquely determined, yet not overspecifled. This procedure, in the

case of the hydrostatic primitive equations, is discussed in Chapter 5, Section 5.
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3.4 Primitive Equations Considerations

In this section we mention some of the theoretical and practical results which

are relevent to adaptive calculations with the primitive equations.

Oliger and Sundstrom (1978) have shown that the primitive equations are ill-

posed for the initial boundary value problem with open boundaries and local, pointwise

boundary conditions. The question arises as to whether the primitive equations are

ill-posed for solution on the local refinements (fine grids). This would be the case if we

chose to treat a fine grid as a separate IBVP and use boundary conditions appropriate

for the equations. Instead we have chosen to use continuity conditions and interpolate

all data from one grid on to the boundary of another. The ill-posedness is not an

issue if the continuity conditions are applied correctly, i.e., with sufficient accuracy.

The ill-posedness of the equations are discussed in more detail in Chapter 5.

Limited area modellers have traditionally circumvented the ill-posedness prob-

lem and its resulting exponential error growth by including horizontal dissipation in

their models and, more importantly, by using sponge-type boundary conditions and

increased horizontal dissipation near lateral boundaries. This leaves open the question

of exactly what equations are being solved and the accuracy of the limited area model

solutions. Our calculations are for flow in a periodic channel. The primitive equations .
are weakly well-posed for these boundary conditions. Now, we must consider the ,

5$
accuracy and stability of these conditions.

There are no analyses for the primitive equations or for nonlinear hyperbolic

equations concerning the accuracy or stability of our boundary scheme. For a 2-D

model hyperbolic equation Berger (1985) has shown that using leapfrog with over-

lapping grids and grid refinement in both time and space is stable. Our adaptive

integrations of the primitive equations have also proven to be stable experimentally.

Accuracy and conservation are related issues and there are few results concern-

ing overlapping boundaries which are rotated with respect to each other. Berger

(1984) derives a conservative boundary scheme for use in solving hyperbolic systems

of conservation laws on 2-D rotated rectangles. We do not implement that scheme

here and know of no implementation of it to date. Henshaw (1985) has found that

when solving elliptic equations on overlapping grids one must use boundary-value in-

terpolation schemes that are at least as accurate as the interior numerical scheme
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and in some cases at least of one order higher accuracy in order to maintain the

overall accuracy of the numerical scheme. Browning, Kreiss and Oliger (1973) show

that solutions of hyperbolic equations on embedded grids of different resolutions may

produce phenomena similar to that of the propagation of waves through materials of

different densities. There can be interference of waves which have passed through

refined regions with waves that have not. This interference is a weak instability and

obviously results in extremely inaccurate solutions.

We address the issues of accuracy and conservation in how and where we decide

to place fine grids. In the adaptive scheme, fine grid boundary values are interpolated

bilinearly from other grids. We use an estimate of the error in the solution to place I

the fine grids and periodically re-estimate the error and replace the fine grids so

that regions of high error always remain contained in the fine grids. The regions

of high error (the disturbances) must never be allowed to pass through fine grid

boundaries onto the coarse grid. Thus, fine grid boundaries always lie in areas where .,

the solution error is low, i.e., where bilinear interpolation will introduce only small .

errors. Bilinear interpolation of the boundary values also insures a nearly conservative

scheme whereas higher order interpolation results in significantly greater conservation

errors. Our integrations indicate that, in this context, the use of bilinear interpolation

5%
is sufficient to insure accurate and stable solutions.
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4. TEST CASE RESULTS FOR

THE PRIMITIVE EQUATIONS

In this chapter we present results for two flow simulations using the adaptive

primitive equations model. We present no detailed data concerning run times for

different models. Our calculations indicate a breakeven point for using the adaptive

method over a single fine grid at about 50-60% fine grid coverage in a 2 level adaptive

model run. This is a research code and with some optimization the breakeven point

could probably be improved to 70-80%.

4.1 Barotropic Cyclone I

The first test case for the adaptive solver is the simulation of a barotropic cyclone

(no vertical variation) which is being advected by an easterly flow in an east-west %

periodic channel. The primitive equations are solved on an f-plane (f = constant

= 5.0 x 10- 4 s- 1) for this flow. The flow is initially barotropic and remains barotropic.

There is no surface friction or energy sink other than the diffusion used to stabilize%

the computations, hence the solution should show the cyclone being advected towards

the west with little change in its appearance.

The initial conditions are shown in Figure 8. The wind field is constructed by

superposing a cyclone onto an easterly flow. The easterly flow has the form

U(Y) = U7,0 . sin2 (Y\L,
where L. is the width of the channel and 0 <5 y _5 LY. The symmetric cyclonic wind

field superposed over the zonal flow has the form
1 I

UC/x- X,) 2 + (y-y) .epI (x -~) X,2 oy)21
UT(X•Y) exp L21 L2

where UT is the tangential wind velocity of a cyclone centered at (x0, Yo). The results

which follow are for the case Uc = 20m/s, U. = -lOin/s and Lc = 350km.

The shallow water equations are sufficient to simulate a barotropic flow. We

employ the full primitive equations, but by not allowing any vertical variation we are

effectively solving the shallow water equations. The surface pressure 7r takes the place

of the free surface height h in the shallow water equations when using the primitive
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Figure 8 Initial conditions for the Figure 9 Cyclone after 3 days with
barotropic cyclone. Surface pressure is in the integration carried out on the coarse
millibars. Winds travel counterclockwise grid with Ax = 180km.
around the low pressure. The cyclone is
being advected towards the left by a
zonal wind.
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Figure 10 Cyclone after 3 days using Figure 11 Typical error estimate for

the adaptive model. There is only a sin- the u velocity (dimensionless x104). The

gle fine grid in the region at any time. estimate has been normalized by

A-Tcors = 180km., Axf., = 60km, I 1 ,s --- 27m/s and the value
Fine grids used in the calculations are r" = 0.035 is used to flag points for

displayed. regridding.
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equations to simulate a barotropic flow. The surface pressure field depicted in Figure

8 is found by solving a Poisson equation which is derived by taking the divergence of

the momentum equation and assuming that the divergence of the horizontal velocity

field is zero. The Poisson equation is

V 2 r= 1 xa (uu) + a(uv) + O(uv) O(uv) + fU)

Tm +an (a( a+tsu) ay

where T,.n is the horizontal mean of the temperature.

Figure 9 shows the solution after 3 days for a coarse grid run with Ax = Ay =

180km. Figure 10 depicts an adaptive solution with a refinement ratio of three and I

one level of refinement. In the adaptive run the coarse grid size is Ax = Ay = 180km.

and the fine grid size is Ax = Ay = 60km. These results clearly show that the coarse

grid does not sufficiently resolve the cyclone resulting in the cyclone's premature decay

while, in the adaptive run, the cyclone is resolved and shows very little decay. The

fine grid is needed and the adaptive calculation is successful.

Figure 10 also shows the placement of the fine grids in the channel. The error

estimation and regridding was performed every nine hours. There is only one fine grid

in the channel at any one time and the plots show all the grids that are placed. The

fine grids are usually just slightly larger than the cyclone and the regridding occurs

often enough so that the fine grid tracks the cyclone. Also note that the fine grids in

this simulation are not aligned with the coarse grid. Another simulation was performed

where the fine grids are aligned and have points coincident with the coarse grid. The

simulations differ only slightly and demonstrate that the orientation of the fine grids

has little effect on the solution though it can have a large effect on the number of

points required in a refinement large enough to cover regions of large error.

Fine grid placement depends on an error estimate of the coarse grid solution as

described in Chapter 2. Only the velocity error estimates were used here to place fine

grids. We will discuss error estimates for the surface pressure and temperature for the

baroclinically unstable jet but they were not used for fine grid placement. Figure 11

shows a typical error estimate for the u velocity field along with the fine grid placed '

over a set of flagged points derived from the error estimate. For this flow the error

estimate of the velocity fields places the fine grid over the cyclone - which is where

we expect it would be necessary.
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Figure 12 Surface pressure (mb) on a fine grid after 9 hours integration. Note the
kinks at the boundaries. These kinks do not appear to affect the solution.

Initial conditions for fine grids are interpolated off the coarse grid or fine grids

which existed before the regridding. A bicubic interpolation scheme is used to obtain

these initial values. Bilinear interpolation has been tried, but was found to excite spu-

rious gravity waves (noise) which take several hours to decay. This is not unexpected.

Bilinear interpolation yields continuous functions but only piecewise continuous first

derivatives between interpolation points. The discontinuities excite gravity waves, es- '

pecially the discontinuities in the derivatives of the surface pressure and geopotential

- derivatives which are crucial for the maintenance of the near geostrophic balance.

Higher-order interpolation yields continuous first derivatives and greatly reduces the

noise at the start of the fine grid integrations.

A critical component of the adaptive solution procedure is the ability to set

accurately the boundary conditions for the fine grid. During this set of simulations

kinks arose in the surface pressure field close to the fine grid boundaries. These kinks

are ilustrated in Figure 12.

The numerical scheme does not use the pressure gradient at the boundary and,

consequently, the kinks have little effect on the solution, because they do not induce
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an acceleration which would redistribute the mass and remove the kinks. They do, of

course, denote a buildup of mass or a mass deficit in the vicinity of the boundary and

indicate a problem with the boundary conditions. These kinks also indicate abnormally

large mass divergences close to the boundary. The inclusion of moisture in the model

may result in more serious problems. The moisture equations are similar to the

surface pressure equation; they are advection equations but they contain source terms.

Large mass divergences close to the boundaries may be accompanied by buildups (or

erroneous deficits) of moisture. The problem of excess rain close to the boundaries is

not uncommon in nested models and is due to an unphysical buildup of moisture next

to the the boundaries. In our simple model, kinks in the surface pressure field do not

greatly effect the solution, in more complex models the problems which these kinks

expose may prove more severe. Hence, next we answer the question of the cause of

these kinks and show how they are eliminated.

The inflow and tangential velocities, temperature, and the surface pressure are

specified as fine grid boundary conditions by bilinear interpolation from the interior

of another grid. As noted in the previous chapter, several investigators have shown

that in order to maintain the overall accuracy of the solution the boundary values

must be interpolated with an interpolation scheme of the same order accuracy as the

numerical scheme and in some cases of one order higher accuracy. Thus we might

expect that the problem is an inaccurate specification of the inflow velocity and that

a more accurate, higher order interpolation scheme will remove the source of the

error and the kinks in the surface pressure field. Tests using bilinear and bicubic

interpolation to set the boundary conditions showed very little change in the solution

and no decrease in the kinks.

The adaptive scheme attempts to minimize boundary errors in a manner not

connected to the structure of the numerical scheme. First, the fine grids are made

large enough so that their boundaries are in regions of small solution error, and hence

the interpolated values will have small error, even if the interpolation is of low order.

Second, if the region of high error cannot be covered by a single grid then multiple

overlapping grids are used. An important addition to this is that the fine grid boundary

values must be interpolated from the best source, which is often another overlapping

fine grid. On the fine grids even low order interpolation will be sufficiently accurate.
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Investigation reveals that the kinks in the surface pressure field arise from using

a numerical scheme which is inconsistent close to the boundary. One row in from the

boundary the diffusion is second order as opposed to the interior fourth order diffusion.

This early version of the code also uses a split-explicit scheme for advancing the gravity

waves, thereby allowing the use of larger time steps. The split-explicit scheme is also

not consistent next to the boundary. Use of the scheme along with the change in

diffusion next to the boundaries was found to promote growth of the kinks.

The solution to this problem is to use a scheme which is consistent throughout

the entire domain. We accomplish this by making two changes. First we interpolate

values for the variables along the boundary and also one row in. This allows the use of

the fourth order diffusion. Second, we use a fully explicit scheme. Another important

reason to use the fully explicit scheme is to allow interpolation of boundary values

from overlapping grids. Presented next are results from the simulation of an unstable

baroclinic jet where we use the fully explicit solver. Errors in the specification of

the inflow velocity, and hence errors in the divergence and pressure fields, are greatly

reduced. I..

'
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4.2 Baroclinically Unstable Jet

For our second test case we simulate the evolution of an unstable baroclinic jet

which has been subjected to an initial perturbation. The disturbance which develops

is commonly observed in the atmosphere and easily simulated in a channel. The

flow's close analog in the atmosphere and its three dimensional nature allow testing

of several adaptive code components untested in the simulation of the two dimensional

barotropic flow case.

Previous simulations of this flow were performed in order to gain an under-

standing of the basic physical processes. Several investigators in the late sixties and

early seventies (for example Williams 1967, Mudrick 1974) used models based on the

primitive equations and the quasi-geostrophic equations to simulate the developing

baroclinic disturbance and the frontal zones associated with it. The cold and warm

fronts have received extensive analytic study, most notably in Hoskins and Bretherton

(1972). Those interested in the dynamics of this flow can consult these papers or for

a more recent and general overview consult Holton (1982).

For this simulation, we solve the primtive equations on a 3-plane (Coriolis pa-

rameter = f = fo + 3y, 0 = Of'/Oy = constant). In the following simulations

f. = 1.479 x 10-s - 1, # = 1.748 x 10 1 1m-s 1 and 0 < y < 8640 x 103 m. The

grid has five layers at a = 0.1,0.3,0.5,0.7 and 0.9. The channel has a west-east

length of 5220km. and a north-south width of 8640km. . The north-south velocity v

is initially zero and the jet has no variation in the east west direction. The thermo-

dynamic fields are found by requiring that the jet be geostrophically balanced. The

balance is derived from equation 3.3 and is given by

0(7 -) °7r
0(RT-.b)c -firu=0.

The temperature and geopotential are linked through the hydrostatic equation

c 1n =-a RT.

As a final constraint we require that the atmosphere be statically stable. Static

stability was discussed in Chapter 3. This constraint is satisfied by requiring that the

potential temperature 0 always increase with height. Plots of the initial conditions

can be found in Appendix 1.
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The geostrophically balanced jet is perturbed by altering the north-south velocity

v. After several simulated days a single dominent wave appears in the channel. The

length of the channel is then tripled to L = 15660km and the wave repeated twice.

By lengthening the channel we force the adaptive code to use multiple overlapping

fine grids - as it might in actual atmospheric prediction work. We can also see if the

three identical disturbances remain identical, as ideally they should. We note here

that a large part of the domain will be covered with fine grids. It is expected that in

operational use a much smaller part of the domain will be covered with fine grids.

The initial conditions for the adaptive simulation are shown in Figures 13-16.

The jet core, which contains the maximum jet velocities, is found on the o = 0.3

layer. The wave is clearly present in the plot of the absolute vorticity (?k. = ik + f ) on

the a = 0.5 layer (Figure 13). This primary circulation is the result of the baroclinic P,,

instability which arises from the vertical shear present in the jet.

Secondary circulations (vertical and divergent motions) are driven by absolute

vorticity advection and temperature advection in the primary circulation and are a

result of the hydrostatic and geostrophic nature of the flow. Positive vorticity advec-

tion occurs to the west of the trough and negative vorticity advection to the east. In

the lower layers, regions of cold and warm temperature advection are found at the

trough and crest of the developing wave respectively. The temperature advection can

be seen clearly by considering Figure 14, the temperature at thea = 0.9 level and

Figure 15, the winds at the same level. Horizontal shear and horizontal deformation ,4

promote the growth of the cold and warm fronts. The shear and deformation fields

intensify in the flow which develops with the development of the surface pressure lows

and highs. These surface pressure features are shown in Figure 16. Cyclonic and

anticyclonic circulations form at the lower levels around the surface pressure lows and

highs. Ageostrophic winds create mass convergence and divergence near the surface

at the lows and highs. These circulations are not present in the upper layers of the

flow.
Poor representation of the fronts and/or of the jet stream lead to slower devel-

opment or even decay of the disturbance. The strength and development of these

features determines the adequacy of the grid resolution. Figures 17 through 19 show

the results after three days of simulation time starting from the fields of Figures 13-
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Figure 13 Absolute vorticity (10"s-1) on the a =0.5 surface for the baroclinically

unstable jet at t =0. of the adaptive run.

Figure 14 Temperature (K) on the a =0.9 surface at t =0. Locations of
the warm and cold fronts are shown.
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Figure 15 Velocity vectors on the a = 0.9 surface at t 0. Note the positions
of the warm and cold fronts (shown in Figure 14) and the positions of the surface
pressure highs and lows (shown in Figure 16) with respect to the wind fields.
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16 and encompass three different runs; a coarse grid run (,Ax = Ay = 540km.),

a fine grid run (Ax = Ay = 180km.) and an adaptive run with a coarse grid

Ax = Ay = 540km., one level of refinement and a refinement ratio of three (hence

AXf ne ; AYf,ne - 180km.). Figure 17 shows the surface pressure for the coarse,

fine and adaptive grid runs. On the coarse grid the surface pressure highs and lows

have lost strength whereas they have not for both the fine and adaptive runs. The

warm and cold fronts exhibit similar behavior. The coarse grid fronts are weakening

while in the fine and adaptive grid runs they are strengthening. The coarse grid cannot

adequately represent the shearing motions and the deformation of the temperature

field in the vicinity of the fronts. Again we see that the coarse grid cannot adequately

represent the flow while both the fine and adaptive calculations represent the devel-

oping baroclinic disturbance well. The same resolution problem is seen in the upper

level flow. The maximum absolute vorticity associated with the jet has grown from

1.4 x 10-4s - 1 to 1.5 x 10- 4 s- 1 after three days for both the fine and adaptive grid

runs but it has diminished to 1.2 x 10- 4 s- 1 in the coarse grid run. The primary wave

is deepening in the fine grid run and the adaptive run but it is being washed out in

the coarse grid run.

Examination of the surface pressure fields in Figure 17 shows that the fine grid

run results and the base (coarse) grid fields for the adaptive run results do not match

exactly. Indeed there are some very noticable differences, and the differences are even

more pronounced in the absolute vorticity fields. This is simply because the coarse

grid cannot possibly represent all the features that are representable on the fine grid.

The base (coarse) grid fields for the adaptive run also show the locations of the fine

grids which have been placed based on an error estimate of the velocity fields. The

adaptive fine grid fields almost perfectly match those of the fine grid run. Even the

vorticity fields (Figure 18), which are sensitive to small errors in the velocity, compare

extremely well with the fine grid run solution.

In these simulations the largest errors are associated with the jet. The gridfitting

routine fits only a single grid over the jet, but this grid is split into two overlapping

grids so that they may be accomodated by the limited workspace in the solver. The

error is re-estimated every 24 hours and new grids created but the positions of the

fine grids change little over several days.
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Figure 17 Surface pressure (mb) at t 72. hours. Locations of the fine grids in
the adaptive calculation are shown in the adaptive coarse grid plot.
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Here, as in the previous simulation, the fine grids are not aligned with the base

grid. In the overlap region the fine grids are aligned with each other but at the periodic

boundary they do not overlap such that their points coincide. In both overlap regions

the solutions agree. For this to be the case fine grid boundary conditions must be

interpolated from the other fine grid in regions of overlap. Using only boundary con-

ditions interpolated off the coarse grid produces unstable results and is also unsuitably

inaccurate.

Surface pressure contours are smooth near the boundary on the fine grids in the

adaptive run. In our previous simulation there were kinks in the surface pressure field

and large errors in the divergence fields close to the boundary. By using a fully explicit

scheme (which allows the setting of boundary condition values from overlapping grids

in regions of overlap) and by setting the variables at the first two interior rows as

boundary values we have eliminated the kinks and large errors. On the fine grids the

disturbances are well represented even in the overlap regions. No noise develops in

the overlap region or at the coarse-fine grid boundaries even when these boundaries

and overlaps have points which are not coincident. Indeed, the fine grid boundaries

and regions of overlap are not readily apparent. Our disturbances remain as three

identical disturbances even though different parts of the disturbances are represented

in different overlap regions. Figure 1g is a plot of the temperature on the or = 0.9

level. Here a cold front and a warm front Dass directly through fine grid overlaps

and fine grid boundaries. These fronts are identical to Zhose not passing through an

overlap region - as they should be.

The numerical scheme used in the solver conserves mass, as do the differential

equations. However, the adaptive method used does not explicitly attempt to conserve

mass. Variables on the base (coarse) grid are updated where possible with an averaged

value from a fine grid and values for boundary conditions are obtained using bilinear

interpolation. In Chapter 5 we will show that this formulation very nearly conserves ',

mass, especially when compared with higher order interpolation methods. For a six

day fine grid run the maximum mass fluctuation in the channel is approximately .007%

of the total mass in the channel. The adaptive and coarse grid runs have fluctuations

of .02%. The error in the mass is on the order of a few tenths of a percent at most.

The magnitude of this error is comparable to the truncation error of the numerical
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Figure 20 Horizontally averaged kinetic energy.

scheme.

We can also derive conservation equations for kinetic energy (KE) and total

potential energy (TPE). The conservation equations show that the total energy (KE

+ TPE) is conserved in an adiabatic flow. Figure 20 is a plot of the average KE of

the atmosphere versus time. The integration is carried out on the base grid during

the adaptive run because the changing locations of the fine grids make an "adaptive"

integration difficult. The kinetic energy should increase as the disturbances grow and

in the fine and adaptive grid runs it does. One should also note that the oscillations

are similar for the fine and adaptive runs. We have calculated the KE which includes

the contribution from the fine grids in the adaptive grid run at 3 days and at 6 days.

These agree well with the fine grid values.

The total energy in the channel (KE+TPE) is dominated by the TPE. In fact,

only approximately 0.5% is available for transfer from TPE to KE. Since we solve an

adiabatic set of equations with no energy sources or sinks and that our flow is in an

enclosed channel, we should find that the total energy is constant over time. This is
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not the case, but in all cases the energy in the systems increases, but the increase is

less than a tenth of a percent of the average TPE, again on the order of the truncation

error in the scheme.

One last run was made using two levels of refinement. Figure 4 illustrates the grid

arrangment at 20 hours. Regridding at level 2 was performed every 12 hours and level

3 every 4 hours (refinement ratio r = 3). The coarse grid has Ax = Ay = 540km.,

the first level of refinement has Ax z Ay ; 180km. and the second level of refinement

has Ax - Ay ;, 60km. Again the refinement is found to be needed around the jet

and the maximum errors are at the jet core. A single fine grid run with Ax = 60km.,

i.e., of the resolution of the fine grids in the adaptive run, indicates that the increase

in resolution from 180km. to 60km. was unnecessary. We performed this integration

as a test using multiple levels of refinement. All general conclusions found for the

two-level refinement case hold when using three levels.

More results for the calculations described in this section can be found in Ap-

pendix 1.
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4.3 Error Estimation

Fine grids are placed in the solution domain based on an estimate of the trunca-

tion error. The procedure used to estimate the truncation error is based on Richardson

extrapolation and it has been described in chapter 2. We wish to demonstrate that

the Richardson procedure produces accurate estimates of the truncation error and do

this by comparing the Richardson estimate with direct estimates of the truncation

error.

The primary advantage of the Richardson based error estimate technique is that -

the form of the truncation error need not be known. The form of the truncation

error associated with the discretized equations 3.1-3.5 is complex and difficult to

derive. Also the, leading order truncation error terms consist of higher order derivatives

which are difficult to compute with more than first order accuracy. The truncation

error estimate obtained using equation 2.2 with a qth order method is accurate to

O(k(k q+ l + hq+l)) which for a second-order scheme such as the one used in the

present solver produces a third-order accurate estimate of the truncation error.

The error estimate for the u velocity field in the barotropic cyclone case (Figure

11) show that the regions of high error are around the cyclone. The coarseness of the

grid precludes any deeper analysis. To further examine the error estimates we have

computed the truncation error for the fine grid run at time t = 72 hours using both

the Richardson based method and the discretized forms of the leading order terms of

the exact truncation error. The error estimates on the fine grid contain detail which

cannot be represented on coarser grids.

First we examine the equations and directly estimate the size of the truncation

error. Our scheme is second-order in both space and time. Small time steps are used

in the explicit scheme due to the presence of the fast gravity waves. Thus, we expect

that the dominent truncation error will arise due to the spatial discretization employed

and hence we will focus on the error in the spatial differencing. Later comparison of

the spatial truncation error with the total truncation error shows that the spatial

error does dominate. We can estimate the size of the truncation error by first scaling

and then nondimensionalizing equations 3.1-3.5 along with the truncation error. The

scaling and nondimensionalization of equation 3.1, the u momentum equation, along

with the spatial truncation error, is contained in Appendix 2.
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For large-scale atmospheric flows we find that the pressure gradient and Coriolis

forces must balance each other and that the advection terms are an order of magnitude

smaller than these. This well known result describes the geostrophic nature of the

atmosphere, i.e., the approximate balance between the pressure gradient and Coriolis

forces. Large-scale flows can often be considered in terms of adjustments to maintain

an approximately geostrophic and hydrostatic state.

The finite difference scheme used to discretize the equations is second order

accurate: the leading order truncation error term is O(k(k 2 + h2)). This truncation

error is the sum of the truncation errors for the individual terms, all of which are of

second order. In the nondimensional equations the pressure gradient and Coriolis terms

have coefficients of 0(10) while the advection terms have coefficients of 0(1). If we

look at the order of accuracy of the scheme we might expect that the truncation errors

for the Coriolis and pressure gradient discretizations would be an order of magnitude

larger than those of the advection terms. This is not the case.

The leading order terms in the nondimensional truncation errors for the Coriolis,

pressure gradient and advection terms are:

5AzX
T(f Tv) -4L 2 (v,,, + v',,,,) (4.1a)

5A 2

-(o(0,r)/8z) ;T-( (4.1b)
~ 2L Z
AX 2 2

r(8(ruu)/8x) g - ju ,.,, + u' ,Pul (4.1c)

Ax 2 1 1 ,,
-(o(,ruv)/ay) ,T:-j(2 (-U V,, + -uV,, + U Y'tVY+

6±~ 2's
2 I

-V U + U'V',,,, + U,', (4.1d)

IN
10

All primed variables are dimensionless and of 0(l) and their derivatives are of 0(l);
Thus, all the truncation error terms are of the same relative size. Direct computations

of these terms confirm this. Thus it appears we cannot ignore any of the terms when

computing the truncation error for the equations directly.

Figure 21 is a plot of the truncation error in the u velocity field at 0' = 0.3 (jet

core) at t = 72 hours calculated using the Richardson based technique. Figure 22 is

a plot of the truncation error associated with the spatial discretization of the pressure

gradient, Coriolis and advection terms computed using the results in Appendix 2. It is
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Figure 21 Truncation error estimate using equation 2.2 for the u velocity field at
t = 72. hours on the a = 0.3 surface. The estimate has been normalized by dividing
by U = 10m/s (dimensionless, x10 5 ).

Figure 22 Truncation error estimate computed from the formulas in Appendix 1 (di- %-
mensionless x101). Normalized and nondimensionalized by multiplying by At/( rU).
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nondimensionalized by multiplying by At/(7rU), i.e., in the same way the Richardson

estimate is nondimensionalized. The two estimates compare very well. Both the

magnitude and distribution of the error are accurately predicted by the Richardson

technique. We originally assumed that the spatial truncation error dominated the

overall truncation error. This comparison indicates that the assumption is correct.

We have also estimated the error in the surface pressure and temperature fields.

The errors in temperature field are large in the cold and warm fronts of the the lower

levels. Here the temperature advection is large as is the deformation of the tempera-

ture fields. The error estimates for the temperature fields contain significantly more

noise than the error estimates for the wind fields. The estimates appear qualitatively 0

correct. It should also be noted that the errors in the temperature are small relative

to the scaled temperature; thus regions of high error may have little significance when

compared with the overall solution error.

The error estimates for the surface pressure are very noisy. It is very difficult to

associate regions of high error with some solution feature. As with the temperature

error estimate, the error in the surface pressure is small relative to the scaled surface

pressure and the significance of regions of high error may be small, but the small

relative size of the error does not explain the large amount of noise in the estimate.

The reason for the noise becomes apparent after the surface pressure tendency

equation and its truncation error are scaled. The discretized form of the surface

pressure tendancy equation can be found by combining equations 3.6 and 3.7. The

continuous equation is

0 7 0J a ~ r V ) J

and its discretized form is

t+At -_t-At
AE, = - i: + rir+i) - -,1jk(ir,j + ir, )+

2Ak=1

Vij+ ,k(7rJ + 7ir,,+l) - Vi,j+i,k(7ri,, + 7r,j+l)).

The right hand side is evaluated at time t. The dominant error in this discretization

will be contained in the discretization of the mass divergence V., . 7rV. If we expand

the discretization in a Taylor series we find that the truncation error associated with
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the divergence term is

h2  83 r &3 7 8 3 U 9&AVr(v°. arVh) =T-(U -oz+  o + 7r + -)

h2  Ou 27r 07r8 2 u Ov2U O\ r 7r3 a2 3)

where zx = Ay= h. We can scale the mass divergence and its truncation error with[

the scaling parameters found in Appendix 3. The dominant terms in the truncation

error and their scalings are
h2  + 3u v 

,T(T -- x2r +

We can rewrite the mass divergence as

V.- 1rVh = 7rV7 •Vh +VhV 7r.

First, we must recognize that the divergence of the velocity field does not scale as

UL but rather scales as Ro U/L where Ro is the Rossby number. The scaling for

the mass divergence is

7rV . •V + 7 r .
SW.

7r fU irtU

For large-scale atmospheric flows Ro , 0.1, * R~oro- and the two terms are of the"[

sa me size. ".

If wc oparie size of the mass divergence with that of its truncation error

we find

masa divergence truncation error

V,-7R2=7V,-V Vo h 2 V 7r o

L 6h2 w0

We see that for Ro (h/L) 2 the mass divergence will be of the same relative size

as its truncation error. This almost always will be the case for global models and

often will be the case for limited aere Rgional) models. In other words the error in

the mass divergence can be ais large a. the aas divergence itself. The Richardson

procedure will not give accurate estimates of tae truncation error for the surface
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pressure if this is the case because the truncation error in the calculation of the mass

divergence cannot be separated from the mass divergence itself. The Richardson

procedure assumes that the truncation error is small, i.e., that the divergence can be

accurately calculated.

The observation that the error estimates for the pressure fields tends to be noisy

is not new. In adaptive calculations of the 2-D steady state Navier-Stokes equations,

Caruso (1985) does not use error estimates of the pressure field for precisely this

reason. Berger and Jameson (1985) do not mention the error estimates they use in

their adaptive calculations for the steady state Euler equations. These error estimate

limitations have yet to be examined in the light of the more complex equation sets

being solved adaptively. It is also unclear what the implications are for a numerical

scheme which uses a non-zero quantity that is calculated with a scheme having a

truncation error as large as the quantity itself.

4,'p
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5. Vertical Refinement with the Primitive Equations
P
t,

The adaptive results presented in the previous chapter involve refinement in the

two horizontal dimensions. In the introduction we have noted that adaptive refine-

ment in two dimensions has been successfully used to solve many types of equations,

including hyperbolic, parabolic and elliptic equations. The primitive equations are

hyperbolic in nature in the two horizontal directions but are elliptic in the vertical due

to the replacement of the vertical momentum equation with the hydrostatic equation.

The success of horizontal adaptive grid refinement for the primitive equations required

only minor changes in the method developed for simpler sets of hyperbolic equations.

The method's success demonstrates the feasibility of using the method for solving a

hyperbolic set of conservation laws in two dimensions and should be viewed as having

a firm foundation in the work of those before us.

Next we examine the problems encountered when attempting to implement ver-

tical refinement in an adaptive or nested model. For large-scale atmospheric flows,

vertical refinement may help to resolve jet streams, upper level fronts, surface bound-

ary layers and other phenomena. In general, though, increasing horizontal rather than

vertical resolution is more important in models used for large-scale atmospheric flows.

Vertical refinement will be much more important in adaptive and nested models which

solve for smaller scale motions, including non-hydrostatic motions. We can envision
hydrostatic equations being the basis for models on coarse grids and non-hydrostatic

equations as being solved on successively finer grids.

Vertical refinement for the primitive equations presents a variety of new problems

that have not been directly addressed by other investigators. Some of the problems
arise due to the elliptic nature of the equations in the vertical, while others are prob-

lems that are also present when constructing horizontal refinement methods but which

may be more severe in the case of vertical refinement. We have not found compatible

solutions for these problems and we do not believe that vertical refinement with the

primitive equations, using presently available techniques, is viable. We present these

results as an argument for this claim and to aid those who may be attempting to

construct a vertically refining adaptive or nested atmospheric model based upon the

hydrostatic primitive equations.
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The practical problems we've encountered are centered around the necessity to

vertically interpolate dependent variables. Three problem areas can be defined; 1)

the prescription of conservative boundary conditions for fine grids and conservative

updating techniques for the transfer of information from the fine to the coarse grids,

2) the preservation of basic flow balances in the initialization of fine grid fields from

coarse grid fields and 3) the conflicting needs of preserving the relative static stability

of the atmosphere against the need to carefully interpolate the horizontal pressure

gradient. In the next three sections we discuss the three problem areas and present

techniques we've tried. We also show how these problems are either solved or do not

arise in the construction of a horizontally refined model. 0

As the character of the equations differs in the horizontal and vertical dimensions

so does, of course, the resulting physical nature of the flow. Many of the problems have

a physical interpretation that often provides the clearest insight into their nature. We

present physical interpretations wherever possible. In the last section of this chapter

we present some theoretical results concerning the primitive equations which indicate

more fundamental problems may exist concerning the use of the primitive equations

in a vertically refining model.

%
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5.1 Interface Conditions

The primitive equations prescribe the conservation of mass, momentum and en-

ergy. From this set other equations can be derived which describe the conservation of

kinetic energy and total potential energy. Equations of this type exist in descriptions

of most fluid flows. The accuracy of numerical solutions can be gauged in part by

observing how well mass, kinetic energy and potential energy have been conserved.

Many argue that conservative schemes (those which conserve various quantities ex-

actly) produce overall more accurate solutions than non-conservative schemes; how-

ever, accurate computation of the solution of a conservative system implies that the

conserved quantities will be accurately conserved, but accurate or absolute conserva-

tion does not imply that the solution is accurate. Thus, those who are concerned with

the numerical solution of fluid flow equations have examined the effect of boundary

conditions upon the overall conservation properties of a numerical scheme.

If a numerical scheme exactly conserves some quantity which is shown to be

conserved by the continuous equations then in order to maintain that exact conser-

vation the boundary conditions must also exactly conserve the flux of this quantity

across an interface. Our adaptive method increases the number of interfaces and the

issue of conservation arises in both the setting of boundary conditions for fine grids

and in the updating of the coarse grid solutions with the fine grid solution.

Consider the function G which is defined as the integral of some quantity A

over the domain 11. In our calculations A may be the kinetic energy per unit volume,

the total energy per unit volume or the mass per unit volume and Q is some volume

of interest. Figure 23 shows a domain subdivided into regions S11 and 12. We can

define G(A) in the region S11 + 112 as

G(A) = Ad Adf. (5.1)
01 02

For the quantity A we can write a conservation law of the form

8A di = S(A)dn + /F(A)" -6dT (5.2)
fDA f I

0 n r

which states that the time rate of change of the variable A integrated over the region

fl is just the integral of the sources and sinks S of A over the region and the integral
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Figure 23 The domain 12. Q = 2 i + 12 and i n.

of the fluxes F of A4 through the boundary r. Taking the derivative with respect to
time of the quantity 0(A),,

dt Ut

n3 0

and substituting for DA/Ot using 5.2 results in "

r2 1  r.J

tern1 terw,2 term3 ,.

+fS(A)d1t+JF(A)., 3 dr. (5.3)':

f~r 2

term4 termS
Terms 1 and 4 are sources of A in regions 1 and 2. Terms 2, 3 and 5 are fluxes of A

through the boundaries. Terms 3 and 5 should be equal but of opposite sign because
the flux is being computed at the same boundary and only the sign of the normal

vector changes.

We can use this model to examine the mass conservation properties of the

adaptive scheme. If we imagine that the region 12I + £22 of Figure 23 defines a coarse

grid and the region f22 defines a fine grid then the interpolation and averaging schemes

,9AA

used in setting boundary conditions and in updating may affect the terms on the right
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hand side of 5.3 and the calculation of G(A). We want our method to maintain the

conservation principle defined in 5.3.

The numerical scheme in the primitive equations model exactly conserves mass,

meaning that mass is conserved up to machine accuracy. Terms 1 and 4 are both

equal to zero. But when we compute 5.1, we actually compute

G(A)= JAdQ + JAd.
at 02

where A represents the averaged value from the fine grid solution that replaces the

coarse grid solution in the updating process. For mass conservation A denotes the

surface pressure 7r and the domain S1 is the horizontal area. We use an area average

of the surface pressure over the scale of the coarse grid when updating the surface

pressure on the coarse grid; hence, mass is still conserved exactly and the source terms

1 and 4 are equal to zero.

Terms 3 and 5, the mass flux through the boundary r2, will cancel if the mass

flux is conserved in the interpolation used for setting the fine grid boundary conditions

and in the averaging scheme used in the updating procedure. The spatial discretization

of the equation representing mass conservation (3.5) is

K

V Zv, (rVk) ak (5.4)
k=1

where

1
V . (yrVk) = 2- (u,,j,k(7r,,j + 7i,+,,) - Ui-l,j,k(r-, + i,,A)) +

1

(Vi,,ki,',i+ ,,,i+1) - Vi,,-,k(7r,,,. + 7r,,))

and the notation for the discretization is as in Figure 24. The mass flux across the

surface shown in Figure 24 is computed as

AoakAy
F = u.-l,j,k(.ri-l,, + ri,) 2

First, consider the case where the interface lies between a coarse grid and a b

horizontally refined fine grid. It is sufficient to consider the mass flux across a line
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AE as shown in Figure 25. If we expand u and 7r in a Taylor Series in y about the

point C we can compute the mass flux on the coarse grid, Fc, across the line AE as

FC(AE) = ucrrcAYAak. it

In the adaptive grid method, fine grid values for u and 7r are interpolated from the

coarse grid using a first order interpolation scheme. The mass flux across AE as

computed on the fine grid is

F1 (AE) =F1 (AC) + F1 (CE)

( + u-)(7rc + c!Yr 5AYAOk

+(uc- __/(_-1~ ~~ A) urcA AYAa
+ UC - Yu'C)(7rC - A!,Y A yC44 22

=(uclrc + 6 yii 2u6r)AyAak

where the prime denotes a derivative with respect to y. The error in the mass flux

across AE is the difference between the mass flux computed on the coarse grid and "'

that computed on the fine grid. This error is '4

F,ror.= Fc(AE) - Fj(AE)

(- (_A UO)AYAk.

In our method the variables are interpolated separately; hence, boundary values

for the fine grid which are interpolated off the coarse grid do not conserve mass and

have this error term. We can immediately note that for a constant surface pressure .e

or a constant normal velocity the interpolated mass flux is exact. For non-constant u '.

and 7r the error term is non-zero. We can estimate the size of the error compared to i

the overall mass flux by appropriately scaling u, ir and y. The correct scalings are

u =Uu"

ir =P.(1 + Sr*)

'y =Ly*

where U = lOm/s, P = 1000mb., Si is a nondimensional scaling parameter with ,a

10
-

2 < S1 < 10' for large-scale atmospheric flows, L = 1000km. and the variables

with astericks are nondimensional and of order one. Substituting these relations into %
a'
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the error term and normalizing by the mass flux FC(AE) gives us a leading order error

term
F:,.o = + O(AY 2 S2).

This is usually a small and almost negligible error because derivatives of the pressure

do not scale with the average surface pressure P but rather with SjPo.

If we were to use a higher order interpolation, for example a bi-quadratic scheme,

then the dimensional error would be

AY21 1 y
F,. 7 o,.- -- (u'r' + -uir + -u" r + -4u r")AYA-"k

16 2 2"-"

and the leading order term in the nondimensional normalized error would be

1 AY2  AY 2

F.rror T2= f- +0 f-S

The leading order term in the error for a quadratic interpolation scheme is larger by

a factor of S - than the error term for the linear interpolation and the error exists

even if the surface pressure is a constant.

The integration results presented in Chapter 4 indicate that the errors are small

when using bi-linear interpolation. Mass is very nearly conserved in the horizontally

refining adaptive model. Keeping the fine-coarse grid boundaries in regions where the

overall error is small also contributes to minimizing the interpolation error. It should

be noted that we could exactly conserve mass by interpolating the mass flux 7r • u

as opposed to interpolating 7r and u separately. We have chosen to use the original

method for it introduces only small errors, and interpolating the variables separately

helps maintain critical balances. We discuss the latter in Section 5.2.

Vertical interpolation is necessary when a fine grid has more layers in the vertical

than a coarse grid, i.e., when implementing vertical refinement. The computation of

the mass flux through a boundary differs between a fine and coarse grid because there

are a different number of layers to sum over (see equation (5.4)). However, only the

velocities need be interpolated in the vertical; the surface pressure is defined only at
the surface. Using bilinear interpolation in the vertical exactly conserves the mass

flux. Higher order interpolation schemes result in errors similar to the errors found

for higher order schemes in the horizontal. Simple tests indicate that the mass fluxes
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may differ by several percent between the coarse and fine grids when using higher

order schemes.
Mass conservation is not only an issue when setting fine grid boundary conditions

but also when updating a coarse grid solution from j fine grid solution. Terms 3 and 5

of equation 5.3 will cancel only if both the interpolation used in setting the boundary

conditions and the averaging scheme used in the updating procedure conserve mass

flux.

In the horizontally refining model, the fine grid solution is averaged over the

scale of the coarse grid. Thus, for a refinement ratio of n, n2 neighboring points on

the fine grid would be averaged to produce the new coarse grid value in the updating

procedure. It can be shown that this procedure will approximately conserve mass flux

in much the same manner as the bilinear interpolation serves to conserve mass flux

in the assignment of fine grid boundary values. Intuitively, we can think of the mass

flux through a coarse grid cell face as being divided over several cells faces of the fine

grid during the interpolation used to set fine grid boundary values. In the updating

procedure, the mass flux through several fine grid cell faces is averaged and used

as the flux through a single coarse grid cell face. In the vertical a similar averaging

procedure must be used in order to conserve mass in a vertically refining model.

It is easy to construct such an averaging scheme. A coarse grid cell mass

flux could be the sum of the fine grid cell fluxes which lie in the coarse grid cell.

An important note is necessary here. The interpolations are not normally reversible

except for the simplest of profiles or for a non-staggered grid. For example, if we

interpolate, in a mass conserving manner, a fine grid field from an existing coarse

grid and then used a mass conserving averaging scheme to compute new coarse grid

values from the fine grid values, we find that the new values do not necessarily equal

the old values, though the mass flux would be conserved.

Mass conservation is crucial for accurate integrations of the primitive equations.

Figure 26 is a plot of the average surface pressure in the test channel during the

simulation of a developing baroclinic disturbance. The results are obtained using

four vertically refining models with different types of vertical interpolations. All the

models use the same initial conditions. The models are differentiated as follows:

59



1.0117

1.0167

1.010D

1.0165

1.01643,r
1.011 M" L

1.0161 MODEL D
1.016

1.0186

1.0156 MODEL B
1.01S7 -

1.0156

1.0136

1.0154

i I I I w I I nI I' '| I

0 1 4 6 6 1 12 1-4

Figure 26 Average surface pressure (mass) for model runs testing fine grid boundary
conditions and coarse grids updating procedures in a vertically refining model.

Model Fine Grid Boundary Vertical Averaging
Condition Scheme for Updating

Model A quadratic non-conservative

Model B linear non-conservative a

Model C linear conservative

Model D quadratic conservative

The conservative updating scheme is the one previously described in this section and

the non-conservatve updating scheme incorporates no averaging, i.e., it replaces the

coarse grid value with the fine grid value. Note that in the previous analysis the linearly

interpolated boundary conditions were found to be much more closely conservative
than quadratic interpolation. While none of the vertically refining model runs was
successful (noisy, inaccurate solutions were obtained), the poorest solutions occurred

when mass was most poorly conserved. Mass was most poorly conserved when using a
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Figure 27 Average kinetic energy for the same runs whose results are shown in
Figure 26.

prevent integrations from becoming unstable.

Mass is only one quantity that is conserved by the differential equations. The
primitive equations also conserve total energy (kinetic plus total potential). The con-
servation equations for kinetic energy (KE) and total potential energy (TPE) contain
only one source term denoting a transfer of energy between KE and TPE. The equa-
tions which describe the conservation of these quantities are of the form (5.1), and
boundary fluxes of these quantities can be examined. First order interpolation, which
only approximately conserves mass, will not conserve KE. The averaging process used
in the updating procedure also will not conserve KE. "'

Figure 27 depicts the average KE in the channel for the runs used to test mass *1.

conservation in a vertically refiring model. Kinetic energy is not globally conserved
because there is conversion of potential to kinetic energy as the baroclinic disturbance
develops. Using the single coarse grid results and the non-vertically refining adaptive
results as a guide, we see that mass conservation is necessary for realistic KE time
evolution. We cannot predict how the total KE of the flow will evolve when mass is

not conserved. We also see jumps in the KE plots at the beginning of integrations.
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results as a guide, we see that mass conservation is necessary for realistic KE time

evolution. We cannot predict how the total KE of the flow will evolve when mass is

not conserved. We also see jumps in the KE plots at the beginning of integrations.

These are the result of the smoothing of the coarse grid velocity fields due to the

averaging which occurs during the updating procedure. These jumps are also present

in the results of Chapter 4. They appear to have very little effect on the solution.

We have observed that fluctuations in the TPE satisfy the same trends as fluctu- 6.*

ations in the total mass when mass is not conserved. The calculation for determining PIP

the TPE in our channel is

0=0

TPE c II (Tr) 9aoyix. (5.7)
g JxJYJ I= 1

The TPE of a parcel is weighted by it's mass, hence the importance of mass conser-

vation is of no surprise. Note, though, that the KE trend is not similar to the trend

in the total mass when the total mass is not conserved.

Mass conservation is crucial. Boundary conditions which conserve mass are

necessary if the overall method is to be conservative and integrations stable. Boundary

conditions and updating schemes which conserve KE and TPE do not appear to be

important, at least for the horizontally refining model. For a vertically refining model

other problems, discussed in the next two sections, prove to be more troublesome.

.4'
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5.2 Initialization

The fields for newly created fine grids are interpolated from coarser grids or

from previously existing fine grids. The fields from which we are interpolating already

exhibit the balances that characterize large-scale atmospheric flows and need not be

filtered or adjusted for numerical integration. These balances are the result of previous

integrations or initialization programs which affect this filtering and adjusting. Our

goal is to interpolate these fields without altering the balances that exist.

Three observations can be made about large-scale atmospheric flows. The at-

mosphere is very nearly hydrostatic. It is nearly geostrophic. The divergence of the

horizontal velocity field is small. Accordingly, the primitive equations assume a hy-

drostatic atmosphere and the numerical scheme enforces this. The practical result is

that either temperature or geopotential can be interpolated, but not both. Some dif-

ficulties associated with this will be discussed in the next section. Here we discuss the

preservation of the geostrophic balance and the divergence fields in the interpolations

used to initialize new fine grid fields.

The divergence field is used to calculate the surface pressure tendency and the

vertical velocity 6. The pressure tendency is computed by integrating (3.5) from

a = 1 to a = 0 and the vertical velocity can then be found by integrating (3.5) from

the bottom boundary to the level where & is required.

The importance of the geostrophic balance is shown in Appendix 1. The pressure

gradient and the Coriolis terms are large compared to the horizontal accelerations but

they very nearly cancel each other. Small departures from this balance contribute to

driving the large-scale flows.

We are caught in a classic numerical analysis problem. Our computations hinge

on the small differences between large numbers. Velocities are large, their gradients

are smaller and their divergence, the sum of the gradients, is much smaller than either.

Calculations of the pressure gradient term in the geostrophic balance exhibit the same

problem.

When refining the grid horizontally, we have found that bilinear interpolation

(first order) does not preserve these balances. Gravity waves (noise) emanate from

regions of imbalance and render the solutions useless. Higher order interpolations

preserve these balances and yield accurate adaptive solutions.

63

• a,



-7 RX r% -.WjW

.

These observations can be easily explained. First order interpolations do not J
4.

yield continuous first derivatives, but rather yield piecewise constant first derivatives.

The balances involve first derivatives and accurate interpolations which yield continu-

ous first derivatives are essential. Higher order interpolations produce continuous first

derivatives and at present we use cubic interpolation in the horizontal for initializing

fine grid fields.

The geostrophic balance and the calculation of the divergence involve horizontal

derivatives and not vertical derivatives. Still, care must be taken when choosing

vertical interpolation schemes because these quantities vary vertically. The largest

problem arises when attempting to preserve the geostrophic balance. To illustrate this

we define a vertical interpolation scheme with weights-Wp,q and -define the vertical

interpolation of a variable u on grid 1 (u') to grid 2 at level p (u2) as

Q
UP Lj WP'qU~ (55

q=l

where Q is the number of layers in grid 1. Wp,q can be constructed to yield an

interpolation scheme accurate to order Q - 1.

It is sufficient to consider the non-flux form of the geostrophic balance. For the

x-momentum equation this relation is

- -RT- + fv

and is finite differenced on the staggered grid of Figure 6, for level p, as

Ax (Oil,j,p - Oij,P) - (Ti ,Xp + Ti,,p)(7rj j, - 7r,,)

f
+ !(vi',P + Vi+I'j,p + vi'j,jp + vi+ 1,j-1,P) (5.6)

If we use the vertical interpolation scheme (5.5) for the velocities and the geopotential

then the balance will not be correctly interpolated. Substituting the interpolation

defined by (5.5) into (5.6) yields the resulting balance on a new fine grid for level p.

Q
w,4iu -i+.. - ) + 1-(v,. + V . + , + " . ,

q= 1 lH,, (T+,q. + T.,q)(r,+,., - ?,,)) (5.7) -.
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Using a method such as this results in imbalances between the pressure gradient and

Coriolis force. The ensuing integrations are noisy and the solutions useless. The

balance is not directly interpolated because we cannot interpolate the temperature

T and the geopotential 0 independently. T and 0 are linked through the hydrostatic
equation (3.3). In the above example we interpolated the geopotential and used the

hydrostatic equation to compute the temperature. This new interpolation is denoted

by H in (5.7). We can define H explicitly. When we integrate the hydrostatic equation

(3.3) to determine 0 from T then we can write this integration as

=APT (5.8)

where 4 and T are column vectors with P entries corresponding to the geopotential

and temperatures in a vertical column and A is a P x P matrix defining the integration

of (3.3). We can define the interpolation of T from a coarse grid at Q levels (T1 ) to

a vertically refined grid with P levels (T2) as

T2 = (A-'WAQ) Ti.

Here W is a P x Q matrix. H is simply the matrix defined by the right hand side.

H = Ap-1 WAQ (5.9)

Note that H is a P x Q matrix. We will say more about this matrix in Section 5.3.
What is needed is a scheme in which the interpolation of the individual variables

results in an interpolation of the balance. The current form of the equations precludes

such a scheme. A simple approximation that would allow use of this set in a vertically

refining model would be to replace T in the horizontal pressure gradient term with

t(a). We can write the pressure and density as

p = Po[p() + Sip']

p = Ro[po(a) + Sip']

and as before 10-2 < S < 10-1. Using the equation of state we can rewrite the

term RT as

RT =P (Po + Sip')
R° (p.o) + Sp,)
PO Po(a)(1 + S1 P! (1 + O(S2)).V

=o po(o) P .(a) P(00
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If we define RT as
Etj' = P. po.a

R. p.o0)

then the approximation we make is that of dropping the order S, terms in the above

relation. This is a reasonable approximation (see Browning and Kreiss, 1985).

We can now interpolate T using the interpolation scheme (5.5). It can be easily

shown that interpolating the dependent variables separately using (5.5) is equivalent

to interpolating the geostrophic balance.

Tests with a model which uses the approximate equations and a mass conserving

interpolation scheme verify that the vertically interpolated initial fields are balanced.

For mass conservation the interpolation (5.5) must be linear. We also note that it

is the geopotential (or pressure in other coordinate systems) which must be interpo-

lated. This has dramatic consequences for the temperature fields. We discuss these

consequences next.
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5.3 Hydrostatic Balance

The mass field in a primitive equations model is completely defined by the

surface pressure and the temperature. All other thermodynamic variables can be

retrieved using the equation of state and the hydrostatic equation (3.3). The vertical

variation of the mass field is completely defined by the temperature field. We can

define a vertical interpolation of a thermodynamic variable based on the conservation

of only one quantity because we have only one degree of freedom, we can vertically

interpolate only one thermodynamic variable.

There are several quantities we may want to conserve when performing vertical

interpolation of the thermodynamic variable. We also want to preserve the relative

smoothness of the vertical profiles of all the thermodynamic variables. The following

are important considerations when interpolating the thermodynamic variable.

1. The total potential energy is defined in equation (5.7). It can be shown (Lorenz,

1960) that only z 0.5% of this energy is available for conversion to kinetic energy

and only z 0.05% is actually converted into kinetic energy. Conservation of TPE

is important because small changes in TPE may lead to large changes in KE.

2. Vertical temperature profiles are observed to be smooth and do not generally

exhibit folds except at the boundary between the troposphere and the strato-

sphere.

3. For large-scale flows the atmosphere is almost always statically stable. The

convective adjustment scheme in the primitive equations model ensures this.

We have seen in Section 5.1 that in order to conserve mass we must interpo-

late the velocities linearly in the vertical direction. In Section 5.2 we showed that

we needed first to introduce an approximation to the equations and then to interpo-

late the geopotential in the same manner in which we interpolated the velocities if

we were to maintain the relative geostrophic balance in the atmosphere. Hence we

must interpolate the geopotential linearly. We noted that this resulted in a different

interpolation of the temperature which we defined with the matrix H.

Figure 28 shows three different interpolations of the geopotential (taken from

the standard atmosphere) and the three resulting temperature profiles. Linear inter-

polation (in o,) of the geopotential results in an unphysical temperature profile. Linear

67



interpolation in /n(o') produces non-smooth temperature profiles. Only higher order

interpolation in In(a) will produce somewhat smooth temperature profiles.

The reason for this behavior is found by examining the discretization of the

hydrostatic equation. The discretization of the hydrostatic equation (3.3) is

R
'kk - 0k+1 = -(ln(ok) - In(o'k+1))R(Tk + Tk+l) (5.10)

where increasing k corresponds to increasing or and decreasing z. A physical interpre-

tation of this hydrostatic equation is that the thickness of a layer (A0) is determined

by the layer's average temperature. We compute this temperature as the average of i
the temperature at its top and bottom. In this light one can see that the average

temperatures produced by interpolating 0 are physically reasonable but the resulting

integration of the hydrostatic equation produces, in most cases, unreasonable oscil-

lations about this average. This behavior can also be understood by examining the

matrix A in (5.8). A is a rather poorly conditioned matrix and its inverse, used in

computing H in (5.9), is not well behaved. Small changes in 0 can result in large

changes in T.

A higher order interpolation of 4 in In(o) smoothly interpolates a4,/a(Ina)

which leads to the significantly smoother temperature profiles. But even higher order

interpolations of 4 can lead to physically unrealistic temperature profiles.

The difficulties inherent in interpolating the geopotential and calculating the

temperature field using the discretization (5.10) are well known. Initialization pro-

grams which prepare observational data for use in numerical integrations very carefully ',

adjust the geopotential profiles to produce realistic temperature profiles. An example

of a variational procedure which accomplishes this task along with a more detailed

discussion of the problem of interpolating the geopotential can be found in Barker

(1980). Many of these problems could be avoided by defining the temperature at

the midpoints of the layers or possibly using higher order integration schemes for the

hydrostatic equation. The popularity of the discretization (5.10) arises from the fact

that using (5.10) along with a suitable discretization for the energy equation results

in exact conservation of total potential energy.

Smooth vertical interpolation of the temperature does not ensure that the static-b

stability of a column is maintained. Only if the potential temperature is interpolated
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is the stability profile preserved. Unstable profiles are immediately mixed by the

convective adjustment routine described in Chapter 3. Interpolations which produce

unstable profiles from an originally stable profile often lead to noisy and even unstable

integrations.

We must finally consider the conservation of total potential energy. It is easily

shown that TPE will be preserved in the current scheme if the temperature is lin-

early interpolated in the vertical. In tests we have found that when using a scheme

which interpolates the temperature, and not the geopotential, we must interpolate

the temperature linearly in the vertical and use an averaging scheme when updating

(as is used for mass conservation) in order to conserve TPE. When interpolating the

geopotential we do not update the temperature or the geopotential profiles on the

coarse grid due to the difficulty of calculating the temperature from the geopotential.

In these tests TPE was conserved on the coarse grid as long as mass was conserved.
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5.4 Failure of the Primitive Equations

In Sections 5.1 through 5.3 we have outlined the constraints under which the

vertical interpolation scheme is placed. To reiterate, these constraints are

1. the necessity that our interpolations conserve mass,

2. the necessity of interpolating the relative geostrophic balance (hence we must

interpolate the geopotential in the manner in which we interpolate the velocity,

i.e., we cannot directly interpolate the temperature) and

3. the necessity that the interpolations produce smooth temperature profiles and,

of equal importance, that we do not create statically unstable regions through

our interpolations.

The possible solutions we have outlined to these problems are not compatible.

Choosing to satisfy some constraints automatically discounts the possiblity of sat-

isfying the others. We have also found that using a different interpolation scheme I
for setting boundary values than that used in the initialization does not result in any
cleaner or more stable solutions. No solution to these problems is obvious, especially if

the current form and discretization of the equations is kept. Different discretizations lb

and approximations may yield better results but it is unclear whether or not the mass

and energy conserving nature of the current scheme can be preserved.

The most serious problem is centered around the need to vertically interpo-

late the geopotential coupled with the sensitivity of the temperature profile which is

derived using the disci-tized hydrostatic equation (5.10) and the interpolated geopo-

tential. Only temperature can be safely interpolated if the current discretization of

the hydrostatic equation is to be used.

The situation might be characterized as one where there are too many con- ",

straints and not enough degrees of freedom. Thus, it appears that the primitive

equations, in their current form and discretization, are not suited for use in a verti- .-

cally refining model.
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5.5 Theoretical Considerations for Vertical Refinement with

the Primitive Equations

Oliger and Sundstrom (1978) have shown that the hydrostatic primitive equa-

tions are ill-posed for the initial boundary value problem with open boundaries. More

specifically, they state that "local, pointwise boundary conditions cannot yield a well-

posed problem for the open boundary problem using the hydrostatic (primitive) equa-

tions". A discrete approximation of a set of equations cannot have solutions which

behave reasonably if it accurately approximates an ill-posed problem (Thomee, 1969).

Yet the hydrostatic primitive equations have long been used as a basis for numerical

weather prediction models which have performed well. In this section we examine the

mechanism responsible for the ill-posedness as it is revealed in the analysis of Oliger

and Sundstrom. We discuss the success of the primitive equations model, including

the horizontally refining adaptive model, and comment on difficulties encountered us-

ing limited area models. We will also suggest that adaptive or nested models which

employ vertically refined fine grids may face more serious problems in light of the

mechanism responsible for the ill-posedness of the primititve equations.

The analysis of Oliger and Sundstrom (O&S) begins with the primitive equations

posed in x, y and z coordinates.

( +u. V)uH + aVHp + FH =0
op

+ =o (V.a - v U=

(5+ UV)a+kV u =0

In this setuH = (ulu 2 )T,u = (UH, W)T,FH (FF 2 )Tand VH = (8/Oz,8/Oy)T.

The set cannot be analyzed with methods commonly used for hyperbolic systems

of equations because the set is not hyperbolic. This can be shown by first writing the

set in variational form and then examining the constant coefficient problem. Searching ,
for eigensolutions of the form

' = ,eX{i(Vt + WXI + W2X + 3z)}
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reveals that the roots of the characteristic polynomial exhibit the asymptotic behavior

f' = 0(1)

and

+j2,3
W3 U;3

as Wk --+ oo and r/ = v + F2=1 ujWj + wU; 3 . The signal speeds are inversely propor-

tional to W3 and hence the system is not hyperbolic. General methods for analyzing

hyperbolic systems, such as energy methods, cannot be used.

O&S perform the normal mode analysis upon the primitive equations. The
variational set is linearized about an underlying basic state & and Az(z) which satisfies

the hydrostatic equation &P,3 + g = 0. The variables can be rewritten as
a =&(z) + a'

p =Z() + p'

UH =V + ut v = V2}' = conSt.

Substituting these into the set (5.11) and neglecting all nonlinear terms involving only
primed quantities leads to an approximate system. The hydrostatic equation and the
prognostic equations for p' and a' can be combined to yield the following system.

5jUH + 1: Vj ,Xj U + Vx(&P') + F' =0
8 2 a2

( + E,, a )L(&p') + VH. tSH =0
j=1

where

L(&p') = a &o a 8('))
and a = -g-l&2(8/Oz)lnO is a measure of the static stability of the basic state
atmosphere. We assume a > 0, i.e., we are studying perturbations to a statically

stable atmosphere.

This system is separable and the variables u'~ and &p' can be expanded in the

eigenfunctions F of L. The system obtained is
2N+  )' + VH(ap')() + F() =,

j=1

a 2 a
+ E V, ) ,(,p')(9,) + VH . U'H) =0
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where the eigenvalues of L are A.,

The eigenvalues A,, are distinct, positive real numbers and for each v the system

is hyperbolic. The characteristic velocities are vi, vj-c,, and v,+c,, where c,, = Am
Two classes of eigensolutions can be defined and they depend upon the value of c,

relative to vi.

c, > IvjI C, < IVA

inflow outflow inflow outflow

vj <0 vj >0 vj <0 vj >0
c,> ,+ca,>O v,+c,,<O v,+c,,>O

Proper specification of the boundary conditions requires that the number of

boundary conditions specified equal the number of characteristics entering the region.

The signs of the characteristic velocities determine whether the characteristics are

entering or leaving the region and these signs depend upon the values of c,. Values

of c. have been computed for a standard atmosphere with no mean wind shear by

Wiin-Nielsen (1964). The values for the first sixteen modes are listed in Table 1. The

first mode (v = 0) corresponds to an external gravity wave and is essentially the same

as a free surface wave. The other modes are internal gravity waves.

vj ranges from O(lm/s) to O(10m/s). For IvI < cq, and vj < 0 (inflow) only

two variables should be prescribed at the boundary. This is likely to be the case for

the first several modes. For large v, IvjI is greater than c, and three variables should

be prescribed at the inflow boundaries. Thus the number of variables which need to

be prescribed depends upon the wavenumber v. The number of variables which need

specification at outflow boundaries is also dependent upon v. The dependence of

the number of variables needing specification upon the vertical wavenumber v is the

cause of the ill-posedness of the primitive equations. The only way to properly set local

boundary conditions is to formulate these conditions in terms of local eigenfunction

expansions or to use nonlocal boundary operators (O&S). No successful use of nonlocal

boundary operators has been reported.

Next we need to answer the question of how this theoretical result applies to

practical computations. While the equations are ill-posed for the open boundary
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v C. C.

0 322.4 8 4.4

1 34.4 9 -3.9

Table 1 Values of c., versus v. 2 17.4 10 3.5
From Wiin Neilsen, 1964. (c,, in m/s) 3 11.6 11 3.2

4 8.7 12 2.9

5 7.0 13 2.7
6 .8 14 2.

7 5.0 15 12.3

problem, they are weakly well-posed for problems without open boundaries. The

success of global or hemispheric PE models is understandable for there are no open

boundaries. Physical boundary conditions, such as the solid walls of a channel, also

result in a weakly well-posed problem.

For limited area models and for nested models the problem is ill-posed. Limited

area modellers have traditionally circumvented the problem of ill-posedness; and result-

ing exponential error growth by including horizontal dissipation in their models and

by using sponge-type boundary conditions along with increased horizontal dissipation

close to the boundaries. This leaves open the question of exactly what equations are

being solved and the accuracy of the limited area model solutions. The question of

the effects of the ill-posedness of the primitive equations remains.

Problems with noise emanating from limited area model boundaries are the result

of inaccurately specifying the boundary values. Filtering and viscosity may stabilize

the boundary conditions but the quality of the solutions decays in time due to the

ill-posed problem and inaccurate boundary values. Noise arises because there is no

mechanism for preventing disturbances (regions of high solution error) from passing

through the fine grid boundaries onto the coarse grid. Nested models that are not

adaptive cannot control the solution error or the error at the solutions boundaries and

hence are not reliable.

The question also arises as to whether or not the primitive equations are ill-posed
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for solution on the local refinements (fine grids). This would be the case if we chose

to treat a fine grid as a separate IVBP and use boundary conditions appropriate for

the equations. Instead we have chosen to use continuity conditions and interpolate

all data from one grid on to the boundary of another. Our interpolations are of

sufficient accuracy so as not to introduce gross errors at the solution boundaries.

This is achieved by always placing coarse-fine grid boundaries in regions where the

errors are small. Problems concerning the ill-posedness of the equations do not arise.

In the discretized set of equations, the number of modes present in the solution

corresponds to the number of vertical levels in the model. n-level model solutions

contain the external mode (v = 0) and n - 1 internal modes. For non-vertically

refining adaptive or nested models the same modes are present on the coarse and on

the fine grids. This may be a reason for the success of the non-vertically refining

adaptive model.

In a vertically refining model, the number of modes present in a fine grid solution

will be greater than the number present in the coarse grid solution. These higher

modes may develop on the fine grid and, given they are not present on the coarse

grid, appear as sources of error in the setting of boundary values for the fine grid.

This source of error may prove particularly troublesome when a modal breakdown of

the conditions indicates that the number of entering or leaving characteristics differ

on the coarse and fine grids.

This last problem is very likely to occur in practice. For example, if we have a

coarse grid with less than eight layers, a nested fine grid or adaptive fine grid with

more than eight layers and a mean wind of 5 meters per second, then at the outflow

boundaries on the coarse grid it would be proper to specify two boundary conditions

whereas on the fine grid it would be correct to specify two outflow conditions for

the first 8 modes and only one boundary condition for the remaining modes. Present

large-scale atmospheric models typically contain from 5 to 15 vertical layers and hence

these problems can be anticipated if the models are used as the basis for nested or

adaptive vertically refining models.

Wiin-Nielsen has also calculated values of c,, for atmospheres with mean vertical -

wind shear. Table 2 lists some of these results. When vertical shear is present, the

velocities c1, increase. The crossover point, where c, changes from being greater than
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Mean vertical shear (rn/s/km)

1.0 2.0 3.o 4.0

Table 2 c, versus v. 0 322.9 323.6 324.6 325.8

with mean vertical wind shear. 1 35.4 37.6 41.4 46.9

From Wiin Neilsen, 1964. (c, in m/s) 2 19.1 24.3 31.6 40.5

3 14.3 21.2 30.3 40.0

4 12.0 20.4 30.0 40.0

5 11.1 20.1 30.0 40.0

6 10.7 20.0 30.0 40.0 I

vj to being less than vj, now occurs at a higher wavenumber v. For a given wind

speed and wind shear the crossover point could be calculated. For low shear it is still

likely that the coarse grid may not contain the crossover wave while the fine grid will.

For higher levels of shear it becomes unlikely that wind speeds will reach levels where

c. < vj in which case there is no crossover.

We have not been able to construct a vertically refining model which would

allow us to explore the ill-posedness of the boundary conditions and we have no

computational example of the problems we have outlined in this section. We believe

that the ill-posed boundary conditions would adversely affect solutions for vertically

refined nested or adaptive models and that a well-posed set of equations is needed as

a basis for a vertically refining model.
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6 Browning-Kreiss Equations

The primitive equations are used in large-scale atmospheric flow models for

two major reasons. First, the hydrostatic approximation removes sound waves from

the solution. Large time steps can be taken because vertically propagating sound

waves no longer restrict the size of the time step through a limiting CFL condition.

Second, sigma coordinates can be used resulting in greatly simplified bottom boundary

conditions. The primitive equations possess several disadvantages; they are ill-posed

for the open boundary value problem, appear intransigent to use in a vertically refining

model, and are limited to use for large-scale flows.

We wish to use an equation set which, while not sacrificing the advantages of the

primitive equations, removes the difficulties associated with their use. In this chapter

we present the Browning-Kreiss (BK) equations. This equation set constitutes a well-

posed system for the open boundary problem. It is a non-hydrostatic set and, although

derived for large-scale motions, permits the computation of non-hydrostatic motions

on smaller scales. The new set also can be economically integrated in large-scale flow

models. Unfortunately, interpolation problems remain which hinder the development

of a vertically refining model. These problems can be linked to the approximate

hydrostatic balance which exists in the atmosphere.

Presented in the first section of this chapter is a brief derivation of the BK

equations. A fully explicit finite difference model has been constructed for solving these

equations and it is described in the second section. The last section of this chapter

outlines the vertical interpolation problems. We have not been able to construct a

vertically refining model with the BK equations.
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6.1 Derivation

The derivation of the BK equations relies upon the use of the bounded deriva-

tive method. The method was developed by Kreiss (1980) to prepare initial data for

symmetric hyperbolic systems posessing multiple time scales. For large-scale atmo-

spheric motions, fast moving gravity waves and sound waves are not of meteorological

interest and appear only as noise in the solutions while motions of interest, such as

Rossby waves, evolve on slower time scales. The bounded derivative method is used

to develop a set of equations which removes the effects of the fast moving waves.

The fundamental concept of the method, as used in the initialization process, is

simple: Choose the initial data in such a way that at t = 0 a number k > 0 of time

derivatives are of order unity. Using this principle, constraints consisting of partial

differential equations are derived which the initial data must satisfy. The number

of linearly independent constraints does not depend on k, but rather the constraints

become more refined with increasing k. The method results in solutions which only

vary on a slow time scale over some time interval with an upper bound of T. The size

of T depends on k. The larger the number of derivatives of order unity, the longer it

will take for fast waves to appear in the solution.

Browning and Kreiss (1986) dse this method to derive the BK equations. The

constraints which they impose on the initial data in order to suppress fast moving,

short waves are now used to derive a reduced system of equations. The bounded 5

derivative principle as applied to the derivation of a reduced system is: If the solution

of a system of equations varies slowly with respect to time, then it must have a

number of nondimensional time derivatives of the order unity. It is required that the

time derivatives vary slowly not only at t = 0, but throughout all time. The following

is a brief derivation of the BK equations and follows the derivation of Browning and

Kreiss "(1985, 1986).

The derivation begins with a scaling of the inviscid Euler equations appropriate '

for large-scale atmospheric flow. We can write the Euler equations in the x, y, z and

t coordinate system as ,%
',.

da
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dp ~~o(6.lb)
d 1

d- + 1-Vp+ f(k x V) + gk=O (6.C)
dt p

where p is the pressure, V = (u, v, w)T is the transposed velocity vector, p the density,

s = pp- 1 /-', f = f(y) is the Coriolis parameter, g the gravitational constant, -y the

adiabatic exponent (y = 1.4), k the vertical unit vector and

d a a a
dt- = 5 + U + v + w -7z

This set is scaled and nondimensionalized by introducing dimensionless variables which

are assumed to be 0(1). The dimensionless variables, denoted by primes, are

x = L 1x' U = Uu'

y = L 2 Y' v = Vv'

z = Dz' w = Ww'

t = Tt'

p = P,[p0 (z) + Sip']

p = Ro[po(z) + Sip'].

Here, po(z) and p0(z), the horizontal means of pressure and density, satisfy the

hydrostatic relationship

P° 2z + gRopo(z) = 0.
dz

P. and R. are typical mean surface values of the pressure and density. S, is chosen so

that p' and p' are 0(1) with the result being that 10-2 < Si < 10-i. The magnitude

of S, represents the observation that the deviations of the pressure and the density

from the horizontal means (po(z) and po(z)) are small. s is proportional to the

reciprical of the potential temperature and can be written as

s = RoP 1 /'lso(z)(1 + Sis')

with

S,0 (Z) = po(z)po(Z)- /

and In p f 1 pf

' = - 1 +O(Sl).
Po Y' Po
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g and f can be nondimensionalized with ',.

g = Gg'

f = 20[f. + -0],
r

where G = lOm/s 2 and r is the mean radius of the earth.

The scaling parameters have been chosen so that all variables and constants in

the original equations (6.1) are dimensionless and 0(1). By substituting the dimen-

sionless variables into the equations, defining a new variable 0' = p'/p0 (z), arranging

the equations such that the time derivatives are 0(1) and dropping terms of O(S 1 ) I

or smaller we obtain the scaled system given by

dt't- + (10o - 29(Z)w' = 0 (6.2a)

dt- + S200V + ST'pop-l [yd + S2 p(z)w'] = 0 (6.2b)

dug' + S301, - SJfV' = 0 (6.2c)
dt'd + 930',, + sjf'v' = 0 (6.2d)
dv'
-w + SS5[',, + S' (0- 1 (6.2d)

dw'- + SiS5[)',, + Se(O.1.I4)' + g's')] = 0, (6.2e)

where
d a 0 v' , 0

dt'~ V Yt' Ox' D

d = u', + v'V' + S2w','

P(z) = D.(lnpo),'

(z)= 1ODo(lns,),,

O(z) = Do(lnpo). .

The quantities fo(z), .o(z) and oo(z) are defined such that they are 0(1). D. is of

the order of the largest equivalent depth of the atmosphere (the external mode), and

D < Do. The factor of ten in the definition of So(z) is to insure that 9o(z) is 0(1).

The remaining dimensionless parameters are defined by

S2 = D-TW, 32 = D-TW,
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S3 = SIP(RoU2)-1 , 53 = 51 Po(RoV 2 )-'

S4 = 2ITL IL 2 , 54 = 2QTLL2 1 ,

5s = TP.(DRoW)-1 ,

S6 = DGP.- 'R, = DD'-1 .

Using a scaling analysis based upon this nondimensionalization, Browning and

Kreiss derive a reduced set of equations which accurately describe the dynamics of

many scales of atmospheric motion. We do not present the scaling arguments here,

rather, the reader should consult the reference (Browning and Kreiss, 1985,1986).

The system which describes adiabatic, smooth stratified flow is

ds' jWI= 0(6.3)
d t'

3 -ndO' + popo-[Td + f2 - nvlw'] = 0 (6.4)
di'

e ndu + 0', - = 0 (6.5)
dt'
dv'

edv' + 0'1y + fu' = 0 (6.6)

dw'
-- + 0'., + 0.1.' + g's' -- 0 (6.7)

where all variables are nondimensional, of 0(1) and

d 0 +u , a+ 2 n W0

- Ot ' F +-' y + Oz'
d =uz,+" v+i, + e2-nwY,,.

The parameters for the reduced set are q, e and n. They are defined as

-" = S3 = 54,

/7- 1 = S155

with e= 10- 1,n > 1 and 0 < y/< 10- 4 e 2 n . The values of the scaling parameters

v7, e and n are determined by the scales present in the flow and the initial scaling

requirement that all terms other than the scaling parameters be 0(1). Various scalings

are discussed by Browning and Kreiss (1985,1986). For large-scale atmospheric flows

with length scales L, = L 2 = L = 106 meters and D = 10" meters, time scale

T = 10' seconds, and ,elocity scales U = V = 10 meters per second and 1V = 10-2
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meters per second, Browning and Kreiss show that the scaled equations are consistent

and that the parameters r and n have the values 10-6, and 1 respectively.

From this set many simpler sets of equations can be derived which correspond

to the classic sets used in numerical weather prediction. The primitive equations can

be derived from 6.3-6.7 by setting 7 = 0, i.e., by removing the material derivative of

W'. This approximation removes sound waves from the solution and also replaces the

vertical momentum equation with the hydrostatic equation. In a physical, intuitive

sense, we can view setting qj = 0 as equivalent to increasing the vertical sound-wave

speed in the equations to infinity. The approximation is accurate but leaves the system

ill-posed. A different approximation is needed.

Browning and Kreiss replace equation 6.7 by

dw' (6.8)a- r/--7 + 0'", + 0.1,b + g',= 0, (6.8) '

where a < 1.

The bounded derivative method is used to determine a. The method requires

that the solution of the new system of equations must be smooth, hence, it must

have time derivatives of order unity. The equations have been scaled such that the

first derivatives in time are 0(1) or smaller, thus, second derivatives in time must be

examined.

The second derivative in time of the scaled pressure .0' can be isolated by rewrit-

ing equation 6.4 as

en(u't' +v 1 )- 2 (w' + -I W') = 0(e3 ).If + t, + e WX'+

We can take the time derivative of this equation and, using equations 6.3, 6.5, 6.6

and 6.8 to replace the time derivatives with space derivatives, arrive at the elliptic

equation for 4.

4'"',' + o',,'Y' + ae2 r1-['7,- , + (t-lp + 0.1.j)4)', + 0.1("-Y'1i + i,,)4'] -

f( - ae 17-g(s'.., + -y--Pa') + 2n(U ''v, - u'z,) + O(e2 ). (6.9)

Smooth solutions to the set 6.3 - 6.6, 6.8 exist only if the coefficients in 6.9 are of
order unity. Consequently, a is chosen so as to satisfy this requirement, hence

-2
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It can also be shown (see Browning and Kreiss, 1985, 1986) that

(D)'

Large-scale atmospheric motions with the length, time and velocity scales listed in

this section lead to the value a = 10'.

Physically, this approach is opposite to that used in deriving the primitive equa-

tions. The speed of vertically propagating sound waves in the new set of equations

is decreased by choosing a value of a < 1. It can be shown, using the standard

linear analysis, that the new sound wave speed is v/' • v/TRT (for large-scale flows,

L >> D) whereas the actual speed of sound is V/5RT. This is in contrast to the

primitive hydrostatic equations (77 = 0) where the speed of the vertically propagating

sound waves is increased to infinity, i.e., the sound waves no longer exist.

The introduction of a also effects other wave motions. For example, it can be

shown that the gravity waves present in hydrostatic motions propagate at only half

their true velocity when using the Browning-Kreiss equations. The critical point is

that the use of a introduces only small errors in motions for which the equations have

been scaled. Motions smaller than those for which the equations have been scaled

are unimportant in the calculation of the larger scales and, in any case, cannot be

adequately resolved in computations.

Browning and Kreiss show that the system 6.3-6.6 and 6.8 forms a well-posed

set for the open boundary value problem. The system can be used to simulate several

scales of atmospheric motion. These motions include

1. hydrostatic motions with equal horizontal length scales,
2. hydrostatic motions with unequal horizontal length scales,
3. non-hydrostatic motions with equal horizontal length scales,

4. non-hydrostatic motions with unequal horizontal length scales and

5. diabatic motions.
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6.2 Browning-Kreiss Solver

We have developed a solver for the BK equations (6.3-6.6, 6.8). The solver is

tested by simulating a developing baroclinic disturbance in a periodic channel. For

this flow the scaling parameters in the equations are

U = 10 m/s, L =10" meters,

V = 10 m/s, D = 10 meters,
W = 10 - 2 m/s, T - 10 seconds,

and the dimensionless parameters are

a 10-', 7 10 - '

e =10- 1, n 1.

The equations contain several parameters which are a function of z and are

defined in terms of mean thermodynamic variables. The standard atmosphere is used

to compute these functions and the results are listed in Table 3. Note that all the

dimensionless parameters are 0(1). We drop the primes in the rest of this work and

assume that all variables are dimensionless unless otherwise noted.

The horizontal discretization is accomplished on the C-grid, the same grid used

in the primitive equations solver described in Chapter 3. The horizontal velocities

u and v are staggered with respect to a and 4'. This discretization is used in the

primitive equations solver and is illustrated in Figure 6; s and 4' are carried at the p
points in the figure. The vertical discretization is shown in Figure 29. The vertical

velocities are defined on horizontal planes lying between the planes where u, V, s

and 4' are defined. The vertical discretization is similar to the discretization used in

the primitive equations model; however, the vertical coordinate in this model is the

geometric height z and not the normalized pressure pIp,. The vertical velocity w is

located directly above (or below) the a and 0' points on the C-grid, halfway between

layers of the C-grid, as depicted in Figure 29.

The equations are discretized with second-order centered-in-time, centered-in-

space differencing. The scheme is fully explicit. Details of the discretization are

contained in Appendix 3.

The BK equations are in advective form whereas are the primitive equations are

in flux form. Thus, boundary conditions, particjlarly the vertical boundary conditions,
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height pressure density po(z) po(z) s,(z) 3(z) (z)

(km.) (pascals) (kg/m 3 )

32.00 513. 0.0130 0.0051 0.0130 0.5622 -0.3127 -2.2450

28.00 1258. 0.0250 0.0126 0.0250 0.5692 -1.1232 -2.0542

24.00 2651. 0.0460 0.0265 0.0460 0.6150 -2.9239 -1.7930

20.00 5280. 0.0880 0.0528 0.0880 0.7192 -4.0113 -1.6951

18.00 7330. 0.1210 0.0733 0.1210 0.7824 -4.0698 -1.6304

16.00 10136. 0.1650 0.1014 0.1650 0.8464 -4.1985 -1.6143

14.00 13982. 0.2270 0.1398 0.2270 0.9254 -4.3838 -1.6047

12.00 19259. 0.3110 0.1926 0.3110 1.0086 -3.5840 -1.5845

10.00 26352. 0.4120 0.2635 0.4120 1.0681 -2.4104 -1.5497

9.00 30659. 0.4660 0.3066 0.4660 1.0843 -1.4568 -1.4927

8.00 35520. 0.5250 0.3552 0.5250 1.0996 -1.4262 -1.4519

7.00 40989. 0.5900 0.4099 0.5900 1.1156 -1.3488 -1.4131

6.00 47120. 0.6600 0.4712 0.6600 1.1297 -1.2310 -1.3754

5.00 53967. 0.7360 0.5397 0.7360 1.1434 -1.2251 -1.3394

4.00 61595. 0.8190 0.6159 0.8190 1.1577 -1.2299 -1.3056

3.00 70070. 0.9090 0.7007 0.9090 1.1719 -1.2328 -1.2739

2.00 79468. 1.0070 0.7947 1.0070 1.1866 -1.1937 -1.2439

1.00 89862. 1.1120 0.8986 1.1120 1.2002 -1.1206 -1.2149

0.00 101325. 1.2250 1.0132 1.2250 1.2135 -1.1025 -1.2006

Table 3 Standard atmosphere parameters for the Browning-Kreiss model.

differ.

For flow in a channel we assume that all solid boundaries are free slip surfaces

with no normal fluxes. Thus, at the North and South channel walls (y = YS, YN) we

impose the conditions

IV=ysyN = 0

and

8 (u, 0 , w) = 0.

The East-West boundaries are periodic.

In the primitive equations model the vertical velocity in the a-coordinate system,

&, is zero at the surface. This boundary condition is all that is required in the numerical
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Figure 29 Vertical Discretization for the Browning-Kreiss solver.

scheme developed for a set of equations in flux form. For equations in advective form

other conditions must supplement this condit, n. The boundary conditions at the

surface for the BK solver are

W1'=O 0,

and

+ o.1j + gs)l..=0= 0

This last condition is the hydrostatic constraint. At the bottom boundary this con-

straint is consistent because both w and dw/dt must be zero at the surface.

The upper boundary conditions present problems. The upper surface in our

channel is located at a constant height ZT. Since no mass, momentum or energy

flux should occur through this boundary, it would appear that the correct boundary

condition is w = 0 at z = ZT. Using this condition with any other combination of

conditions for u, v, s and 4 results in unstable integrations. In the advective equations

the vertical flux terms are all of the form wOA/Oz; consequently, another possible

form for the boundary conditions would be to specify that the vertical derivatives at

the top are zero but not that the vertical velocity is zero. This formulation has proven
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successful as is shown by the results in Chapter 7. The boundary conditions at the

upper boundary z = ZT are

9 Z' (u,v,w,s,p) =O.

The implementation of these boundary conditions in the discretized scheme, can be

found in Appendix 3.

6.3 Vertical Refinement with the Browning-Kreiss Equations

In Chapter 5 we discussed the problems encountered when constructing a ver-

tically refining model with the hydrostatic primitive equations. The critical problem,

which we have yet to solve, is to interpolate the geopotential in a way which will

produce smooth, realistic, statically stable temperature profiles. The temperature can

be derived from the geopotential using the hydrostatic equation, and vice-versa.

The BK equations are not hydrostatic, hence, the temperature and geopotential,

or in the BK equations the dimensionless perturbation pressure 0 and the dimension-

less perturbation s' to the reciprical of the potential temperature s, are no longer

directly related through a hydrostatic equation. Each variable can be interpolated

independently.

Use of the BK equations does not solve the interpolation problem. The reasons

are:

1. For large-scale atmospheric flows the atmosphere is very nearly hydrostatic.

The thermodynamic variables must be interpolated in a manner which preserves

this near-hydrostatic balance, even though the BK equations do not use the

hydrostatic approximation.

2. Problems similar to those described in Chapter 5 dealing with the interpola-

tion of the geopotential and temperature are encountered when attempting to

interpolate the thermodynamic variables 4 and s so as not to disturb the near-

hydrostatic balance.

These problems can be understood by examining the vertical momentum equa-

tion (6.8), which we repeat here in a different form,

a- = - - 0.134 - gs. (6.10)
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All variables and constants are O(1) except for a-;7 = 10-2. Thus the RHS of (6.10)

must be 0(10-2) if dw/dt is to be O(1). The RHS of (6.10) represents the departure

of the atmosphere from a hydrostatic balance. Since the variables and constants are all

O(1) we see that the RHS terms nearly cancel each other. In exchanging the primitive
equations for the BK equations we have discarded the strict hydrostatic constraint and

replaced it with a vertical momentum equation, but still, the atmosphere must be very

nearly hydrostatic. The two thermodynamic variables in the BK equations cannot be

interpolated independently because abnormally large vertical accelerations arise and

the computations often prove unstable. What is needed is a vertical interpolation 1i

scheme for 4 and a which will preserve the near-hydrostatic balance.

The normalized, nondimensional perturbation pressure 4 must be interpolated
in the same manner as u and v in order to preserve the near-geostrophic balance

in the BK equations. One possible scheme for interpolating s is to interpolate the

RHS of (6.10), i.e., interpolate the departure of the atmosphere from a hydrostatic

balance, and then compute s. This scheme ensures that the near-geostrophic and

near-hydrostatic balance is preserved and that the vertical accelerations are 0(1).

Unfortunately it also results in unrealistic profiles of the potential temperature. Unre-

alistic buckling of the s field occurs and statically unstable layers appear where none

existed. This result is similar to the buckling of the temperature fields discussed in

section 5.3 and illustrated in Figure 28B.

The problem with the vertical interpolation of s is the same problem found in
the vertical interpolation of T. It is the average of a computed in the discretization

of the RHS of (6.10) which must balance the gradient of 4. We have not found a

solution to this problem.

h
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7. TEST CASE RESULTS FOR THE

BROWNING-KREISS EQUATIONS

In this chapter we present results from the adaptive Browning-Kreiss model.

With these results we demonstrate that the BK equations correctly simulate large-

scale, hydrostatic flow and that the adaptive components of the model perform prop-

erly. We conclude the chapter with a section which discusses the use of these equations

and the adaptive model for simulating non-hydrostatic flows.

7.1 Barocinically Unstable Jet

We have used the BK model to simulate the evolution of a baroclinically unstable

jet which is subjected to an initial perturbation. The results described here are similar

to those in Section 2 of Chapter 4. The two simulations cannot be directly compared

because different coordinate systems, variables, initializations and equation sets are

used. We consider it sufficient that the developing flow possess the features of a

developing baroclinic disturbance, and given this, we conclude that the BK equations "k -

adequately describe large-scale atmospheric flow.

The initial conditions for the unstable jet are shown in Figure 30. The plots

are in terms of the normalized velocity u and the perturbation variables 0 and s.

The channel width (N-S) is 12,000 kilometers and its length is 5040 kilometers. The

beta-plane approximation is used. The initial conditions are derived by requiring that

the fields be in geostrophic and hydrostatic balance. The vertical velocity is initially

zero. The north-south velocity v is perturbed, thereby providing the perturbation to

the jet. The perturbation is not balanced.

After several days simulated time the disturbance has developed. Figures 31,

32 and 33 are plots of the velocity vectors, pressure and potential temperature for

the plane at Z = 1km. These plots show several of the prominent features of the

developing baroclinic disturbance.

Figure 31 shows the cyclonic and anticyclonic circulations about the high and

low pressure regions shown in Figure 32. These features can be compared with the

wind and surface pressure patterns from the primitive equations model plotted in

Figures 15 and 16. Although the strengths of the disturbances differ, the general

features are present in both. Figure 33 is a plot of the potential temperature for
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the BK model and Figure 14 is a comparable plot for the primitive equations model.

Again we see that the fronts are similar in appearance. As in the primitive equation

simulation, the warm and cold fronts at the lowest levels are located in regions of

horizontal deformation and horizontal shear. Wind shifts are found at the fronts.

Figure 34 is a plot of the North-South velocity v on the vertical cross-section

along the line AB in Figure 32. The location of the troughs and ridges are highlighted

in Figure 34. We observe that the troughs and ridges tilt towards the west. This tilting

is needed if the mean flow is to give up potential energy to the developing disturbance.

We also observed that the low level, low and high pressure regions (troughs and ridges

close to the surface) develop between the upper level troughs and ridges and this can

also be observed in the plots. In the mature phase of the disturbance the troughs and

ridges at the lower and upper levels coincide.

These results indicate that the BK equations are sufficient for use in the test

case and that the solver is adequately accurate. More rigorous testing of the equations

has been performed by Browning and Kreiss (1985, 1986).

We have performed adaptive calculations with the BK model using the fields

shown in Figures 31 through 34 as initial conditions. The same principles are used

for grid interaction in the adaptive BK equations model as are used in the adaptive

primitive equations model. We wish to show that the fine-coarse grid interaction is

correct. This interaction takes place during the setting of fine grid boundary conditions

and updating of the coarse grid solution. We also want to show that the interaction

between overlapping fine grids is correct. The solutions in the overlap region should

be the same.

Figures 35 and 36 show the coarse grid pressure and potential temperature fields

on the Z = 1km. surface after 36 hours simulation time for a run which used the grid

setup shown in Figure 37. As in the primitive equations simulation, the maximum

errors occur at the jet core and fine grids are placed over the jet. After 36 hours time

the lower level low and high pressure regions have moved east with the low intensifying

by a few millibars. This is not a strong disturbance but the simulation does illustrate

noise arises from the updating procedure.
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Figures 38 and 39 contain plots of the pressure and potential temperature on the

fine grids in figure 37 at the Z = 1km. surface. In the overlap regions the solutions

agree. There are no kink- in the fields at the boundaries. The fine grid boundary
conditions are performing properly. There is significantly more detail in the fine grid

cold and warm fronts than that which appears on the coarse grid. The coarse grid

does appear to represent the pressure field adequately. A solution calculated on the

coarse grid alone does not exhibit as much growth in the strength of the low pressure

system and also diffuses the cold and warm fronts.

These results show that the adaptive BK model works correctly, at least in a
qualitative sense. While both the adaptive BK model and the adaptive primitive equa-

tions model produce acceptable solutions for our test problem, there are advantages

to using the BK model. The BK equations are well-posed for the open boundary prob-

lem. If the coarse grid has open boundaries, such as in a limited area model, correct

boundary conditions can be used and excessive filtering and noise at the boundaries

can be eliminated. We have also found that significantly less artificial viscosity is
needed in the BK model as compared to the primitive equations model to avoid non-

linear instability. For example, in fully explicit calculations with the primitive equations

model and a damping term for the quantity 4 of the form

we use

K = 1 Az4

1280 At
whereas for the Browning-Kreiss model we use

K 1 AX 4
53120 At
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Figure 35 Pressure (millibars) at Figure 38 Potential temperature
z = 1km after 36 hours integration (K) at z = 1km after 36 hours inte-
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the boundaries.
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7.2 Error Estimation with the Browning-Kreiss Equations

Error estimates using the Richardson procedure (eqn. 2.2) are performed on the

fields shown in Figures 31 through 34. As noted earlier, the maximum errors in the

velocity fields are found at the jet. We find that the maximum error is associated with

the computation of the pressure gradient term in the momentum equation when the

BK equations and discretization described in the previous chapter are used. This is

in contrast to the results using the primitive equations solver described in Chapter 3.

In those results the error was of equivalent size for all the terms.

We can compute the truncation error for the terms in the BK momentum equa-

tion 6.5. The terms are already dimensionless and 0(1), thus, we can directly compare

the error terms. The computed truncation errors are
T u A( 2 1 1 ) + O(AX 3 )

O-( x 2 3iUUX
au AX2 + + 1 VYp') + IAX 3

T(v ( "uN(vz- + VY) + O(, . )

OA A 2 5

(,n 9 - (-5zzz)+ O(AZX 3 )
x 26

7(-e_.fV) - AX- ( 5fA Z + V1 1)+ O(AX3 )
2', +

and we have used e = 10-1.

We can compare these truncation errors with those computed for primitive equa-

tions (4.1a - 4.1d). The relative size of the errors is similar for the corresponding terms

but the forms are not necessarily the same because the forms and discretization of

the terms differ.

Error estimates for the pressure are noisy as they were for the surface pressure

when calculating with the primitive equations. Once again this is due to the diffi-

culty in accurately calculating the error in the divergence. Error estimates for the

temperature show that the regions of high error to lie in regions of large horizontal

temperature advection. These estimates, as those for the primitive equations, also

tend to be noisy.

We conclude that error estimates are largely dependent upon the equations and

their discretization. Error estimates should be re-analyzed when equations or the

discretizations are changed.
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7.3 Computing Non-hydrostatic Motions

Non-hydrostatic motions can be computed using the BK equations. Outlined

in this section is a possible extension of the present adaptive BK model which would

allow the computation of non-hydrostatic motions.

There are three parameters in the non-dimensional BK equations (6.3-6.6, 6.8)

which depend upon the scales of motion in the flow. These parameters are n, 17and

a. By using the dimensional version of 6.3-6.6, 6.8 we can eliminate n and 77. The

dimensional system is

ds (- + Sw = 0 (7.1)
di

+pop. -td + Pw] =0 (7.2

du
dt" +- 0- - fV = 0 (73)

dv + € + fu =0 (7.4)

dw
+ Q(0" + 0.14 + gs) = 0 (7.5)

where all variables are now the dimensional counterparts of the dimensionless variables

defined in Chapter 6.

The dimensionless parameter a remains. It must be chosen such that the dimen-

sional counterpart of the elliptic equation for the pressure (6.9) has smooth solutions.

This is accomplished when a = (D/L)2 . In an adaptive model, where Ax and Az

are appropriate for the scales of motion found on a particular level grid, we can satisfy

this constraint by choosing a = (Az/AX) 2 , hence, a is determined by the grid level.

A model using these equations would be capable of simulating hydrostatic large-scale

motions and nonhydrostatic, small-scale motions in a single, adaptive computation.

As a final note, we mention that there is still one major problem to be solved

before such a computation would be reasonable. It will be necessary to use vertical

refinement in an adaptive model which computes both hydrostatic and non-hydrostatic

motions. Non-hydrostatic motions have much shorter vertical length scales than

their hydrostatic counterparts, and a vertical discretization sufficient to resolve non-

hydrostatic motions would not prove practical for the larger scale computations.
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8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions
I

An adaptive grid refinement technique has been used to compute solutions to

equations describing large-scale atmospheric flow. Fine grids are placed automatically

based on a Richardson-type estimate of the local truncation error in the solution.

Simulations of a barotropic cyclone and of a baroclinically unstable jet were performed
to demonstrate the feasibility of using techniques of this type in NWP and similar

large-scale flow computations.

Successful simulations with both the primitive equations and the Browning-

Kreiss equations strongly support the concept that refinement need only occur only

where dictated by the error in the numerical solution. This is sufficient to improve

the accuracy and overall resolution of the entire solution. Using this simple concept
',as produced the first adaptive solution of atmospheric flows and the first detailed,

quantitative results concerning the truncation error in the numerical solutions. These

simulations represent the first adaptive solutions of three-dimensional time-dependent

fluid flow.

Several critical components ensure an accurate, smooth solution. Numerical
schemes must be consistent up to the boundaries. Changing operators close to the

boundaries may cause kinks and discontinuities. When fine grids overlap, boundary

values for one fine grid must come from the other. This necessitates the use of a fully
explicit scheme (explicit even with respect to the boundary conditions) or of some new "

scheme which would take into account the overlapping fine grid constraint. Higher

order interpolation techniques for use in setting the initial conditions are necessary so

as not to excite gravity waves when initializing any fine grid fields.

Richardson estimates of the truncation errors in the u and v momentum equa-

tions compare well with the directly computed truncation errors for both the primitive
equations and the Browning-Kreiss equations. Error estimates for the pressure for
both sets of equations are unreliable and noisy because it is difficult to obtain accu-

rate, smooth values for the local mass divergence and even more difficult to compute

the errors in the mass divergence.

Truncation errors arising from the spatial discretization dominate the overall
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truncation error. For the primitive equations solver the error was equidistributed

among the terms in the equations. In the BK solver the dominant terms in the

truncation error arose from the terms describing the geostrophic balance, i.e., the

large terms in the equations. The difference in the truncation errors between the

two solvers indicates that analyses of the error estimates should be performed on a

case by case basis. Even though in general, the errors are large in regions where we

would expect them to be large, the form and magnitude of the errors depend upon

the equations and discretization used.

Only 2-D horizontal refinement was successfully implemented. Several problems

arose when we attempted to introduce uniform vertical refinement into the adaptive

method. The most serious problem resulted from the vertical interpolation of the

thermodynamic variables. We have yet to discover a method which will return smooth,

statically -table profiles, will preserve the hydrostatic and geostrophic balances present

in large-scale flows and is suitable for use in an adaptive or nested model.

a'.
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8.2 Recommendations

There are several directions future research may take in light of the results

obtained to date. An adaptive model for large-scale atmospheric flows, a model

which includes realistic physics, should be developed and tested with real data. Only

in this way, by testing with actual data and with analyses of the model's predictive

capabilities, will the true worth of the adaptive method become known.

A more immediate research problem connected with developing an operational,

adaptive, large-scale atmospheric flow solver is the development of a splitting scheme

for use in an adaptive model. In our simulations we used a fully explicit solver because

fully explicit boundary conditions were needed in the case where fine grids overlap and

so that continuity boundary conditions could be successfully applied at fine-coarse grid

boundaries. Splitting methods can allow the use of time steps 5 to 10 times larger than
that used in an explicit technique with little added cost per time step. Even though L

the overhead intrinsic to the adaptive method is relatively small, the development of

a splitting technique for adaptive use may well prove critical in the development of a
large-scale operational adaptive atmospheric model.

An adaptive model should be developed for the computation of non-hydrostatic

flows. We have briefly outlined how this might be accomplished with the Browning-

Kreiss adaptive model. Other equation sets used for non-hydrostatic motions might

also be tried. Some of the more important questions remaining in atmospheric sci-

ence exist in the study of smaller scale motions (mesoscale meteorology). The next ,,

generation of mesoscale models will play a large, if not the largest, role in answering

these questions and the models will certainly need to incorporate some adaptive or

greatly expanded nested capability.

The vertical refinement problem needs further study. The use of adaptive or

nested models in the study of several interacting scales of motion will be limited unless

an answer to this problem is found, especially if the scales span both hydrostatic and '

non-hydrostatic motions.
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APPENDIX 1

Additional Results

In this appendix we present additional plots of the results obtained with the

adaptive primitive equations solver. The results are for the case described in Chapter

4, Section 2 unless otherwise noted.

The first figures shown are plots of the u velocity, temperature, geopotential

and surface pressure for the baroclinically unstable jet before it is perturbed. The jet

is geostrophically balanced and the atmosphere is statically stable.

The next set of figures shows the geopotential at 500 mb. and the magnitude

of the horizontal velocity on the 300 mb. surface (where the jet core is located) after

72 hours of the adaptive test run. Other fields are plotted in Chapter 4. The 500

mb. field clearly shows the developing wave and further illustrates the poor resolution

of the coarse grid solution compared to the solutions on the fine and adaptive grids.

The maximum velocities at the jet core are twice as large in the fine and adaptive

runs compared with the coarse grid run. ,p

The test runs were carried out to 6 days. Plots of the surface pressure, vorticity

and geopotential at 500 mb. after 6 days illustrate the continuing decay of the coarse

grid run solution. The surface lows are still gaining strength in the fine and adaptive

grid runs though the disturbance is in its mature phase.

"p.

'p.
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APPENDIX 2

Truncation Error for the PE Momentum Equations

We wish to estimate the relative size of the truncation errors associated with the

spatial discretization. This can be accomplished by scaling and nondimensionalizing

the equations and the truncation error associated with the discretization. In this

model we do not refine in the vertical and the Richardson error estimate does not

estimate errors in the vertical differencing. Thus, to simplify the analysis we do not

consider the vertical advection terms.

For our purposes it is sufficient to analyze only one momentum equation. We

scale and nondimensionalize the u momentum equation (3.1) with the following

change of variables:

r = 7r. + f7rr' 7r. 1000mb.

" =10mb.

0 = 0. + 4' 4o = 10m 2 /s 2

= 10 3 m2/s 2

T = T, + TT' RTo - 105m2/s 2

Rt = 1O4m
2 /s 2

u = Uu' U = lom/s

V = UV'

x = Lx' L = 106 meters

y =Ly'

t = tot, t. = L/U = 10's ft

f = fff' = 10- 4 s - 1

where the primed variables are dimensionless and of 0(1). The scaling values are

appropriate for large-scale atmospheric flows. If we substitute these into equation

3.1, drop the obviously lower order terms and divide trhough by 7ro U/to we arrive at

the following nondimensional momentum equation:

Ou' Ut, (O(u'u') + (u'v') toe 0' -f oRTO + f+~_~ oL'/ ro + foto. ,'
T k lix', ly' JUL O~x roUL ax' % %

%-1-1 110(10)
0(1) 0(10) 0(10)

Using these scalings we find that, for large-scale atmospheric flows, the Coriolis term
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mutbalance the pressure gradient terms and the advection terms are an order of

magnitude smaller than either of these. This simply describes the geostrophic nature

of the flow.

We can now use these results to scale and nondimensionalize the truncation error
associated with the spatial discretization of equation 3.1. The leading order terms

(O(AX2 )) of the dimensional truncation error associated with the terms in equation

3.1 are:

4 34 7

+ 27ru~u,, + 2irzu,)±OA
Ax 2  1 1r(a(lruv)/eay) =-4-(svir, + 1r~v~uy + tsr,,v, + 7rUVyy + 2 7rUyV3,

+ ~UTrV 1 1 + 7ru,,V3, + 7rUV, + 2 U7r,,V, + U7ry,~Vy

+ rvuyf1,1 + Vlr,L1 3 + V7r,,U, + V7r,,U, + jUvV~r 33 2

+x2 0 r ... + 7 170 .. + 1 0 .7r., + OA z3 ) + O A

z2 1
,r((RT - O)8ffr/c8) Ax 1-((RT - 0)7r, + 7r-.(RT.. - 0..)) + O(Ax 3 )

rAfir1) +A- r(VZZ + VYW) + 7rZVZ) + O(AX 3 )

We nondimensionalize the truncation errors by substituting the previously defined

primed variables and dividing by Uw0./t.. The leading order nondimensional terms are

given in Chapter 4, Section 4.3. The nondimensionalization of the truncation errors

indicate that all are of the same size, even though the respective terms from which

the truncation errors are derived are not.
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APPENDIX 3

Discretization of the Browning-Kreiss Equations

In this appendix we outline the discretization of the Browning-Kreiss equations

(6.3 - 6.6, 6.8). A time-centered, space-centered discretization is used. The time
marching scheme is the leapfrog method described in Chapter 3. We outline the

spatial discretization here.

Interior Differencing -

The spatial discretization is performed on the C-grid shown in Figure 6. First -

we examine the advection terms. For 4) and s the horizontal advection terms are

differenced as

U ( i-I+ Ui+ (4), S)i+ - 4) S)i..

where x = i - AxX. The differencing is similar, only rotated, for the (), s), terms.

For the horizontal velocity advection terms the differencing is straightforward.

We difference the advection terms as follows.

49U Ui+ - Ui 1 j

This differencing can be rotated for the vv, term. The two remaining terms require

interpolating the advecting velocity. The differencing is

OU 1 i.jp4+vs,+ . 4 .. (Uj+ 1 - u,... 1)

where x = i. zAx and y A . y. Again, the differencing for the uv,, term can be

obtained by rotation. I

The differencing of the vertical advection terms is complicated by the fact that

the grid is not uniformly staggered in the vertical. The vertical velocities are located

along the same vertical axis as 4) and s. We compute the vertical advection term by

first interpolating the advecting velocity and then by computing the vertical derivative.
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1 AZk-_ AZk 5, S, U. V

2k A Z +k..j+-Uk+j) k-i
k-1 - AZI{ Z

( ) ~Wk (S)k1 - S)k+. k AZ_8z I k A Z

k +81 - -

We must interpolate in both the horizontal and the vertical when computing

the advecting velocity in the vertical advection term for the horizontal velocities.

w does not lie directly above or below u or v. For this case we can compute the

advecting velocity Wk for the horizontal velocity u by using the formula for wk above

and replacing

1'

Wk+I -+ IT (Wk+ 4,i...I + Wk+ J,i+ ) ~.

and using these values for computing the vertical advection of u in the previous

formula.

The Coriolis parameter f is located at the 0-s points. The differencing for the

Coriolis term -fv j,, where point (ij) is a u velocity point, is

S+ v,..jj-j) + fijV~'~ +

Rotation and a sign change results in the discretization for +fu.

The parameters (z), (z) and p.(z)/p0 (z) are carried at the C-grid levels , i.e.,

the levels where u, v, 4) and s are defined. Consequently, since w levels lie halfway

between C-grid levels, we difference the hydrostatic terms in the vertical momentum

equation in the following manner.

(: +0.1i+ gs) ; z4 + !( +i ) ( + J;+I) + 2(S + Sk+I)
xb44 iAZ 42

Other terms in the equations (6.3-6.6,6.8) are differenced in a manner similar and

consistent with what has been presented.
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Boundary Conditions

Two types of boundary conditions are applied at the horizontal boundaries of

the channel. The East and West boundaries are periodic. We overlap the grid by 2Ax

at this boundary. The North and South boundaries are solid walls and at these walls

we require

VIY=YS,YN = 0

and

8 (Ul y w9sS) = 0.
8!? PY=YSYNV

These conditions are discretized by defining fictitious points outside the boundary. For

a solid wall at y =Y

YN +" A' u ,

YN V V V solid wall boundary

YN - A' U U

we require that
(U, w, ,,S)IYNv+Au/2 =(u, w, I S)IYN -&y/2

and that

VIYN =0.

At the surface we need to specify conditions other than w = 0 in order to

compute the vertical advection terms at the points closest to the bottom boundary.

The bottom boundary is located at z = 0. Here we require that the derivatives with

respect to z of u, v and s are zero, and, as with the discretization of the lateral solid

wall boundaries, we define a fictitious point outside the domain.

Z Us,u v

, s, u, v

-7az / / / / surface

fictitious S U, s, ,v
points K + 1
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Since (u,v,s)z = 0 at z = 0, (u,V,S)K+l = (u,v,s)K-. 0 is computed by noting

that the atmosphere is hydrostatic at z = 0. The hydrostatic equation for the system

is

+ o.1 + gs)= 0.

Applying the hydrostatic constraint at the lower boundary leads to a formula for Ok+1,

k+I= [Ok(-Az 0.05j) - g ( s k + Sk+)]/(-- + 0.05.).

fk+I can now be used in the calculation of 0, at level k.

The upper boundary condition differs from the lower boundary condition. We

define an upper boundary at z = ZT and require that there be no flux of mass,

momentum or energy through the boundary. We again define fictitious points outside

the boundary.

Z fictitious points

S8 U, V k=0

Ztop

U, V k=1

The boundary condition is imposed by setting

(u, V,W,S, 0)0 =(uVWs

With these exterior values the vertical advection terms can be computed in the layer

next to the upper boundary.
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